// the library for the embedded linux device extern crate linux_embedded_hal as lin_hal; // the eink library extern crate eink_waveshare_rs; use eink_waveshare_rs::{ EPD1in54, //drawing::{Graphics}, color::Color, WaveshareInterface, }; use lin_hal::spidev::{self, SpidevOptions}; use lin_hal::{Pin, Spidev}; use lin_hal::sysfs_gpio::Direction; use lin_hal::Delay; // activate spi, gpio in raspi-config // needs to be run with sudo because of some sysfs_gpio permission problems and follow-up timing problems // see https://github.com/rust-embedded/rust-sysfs-gpio/issues/5 and follow-up issues // DigitalIn Hack as long as it's not in the linux_embedded_hal // from https://github.com/rudihorn/max31865/blob/extra_examples/examples/rpi.rs // (slightly changed now as OutputPin doesn't provide is_high and is_low anymore) extern crate embedded_hal; use embedded_hal::digital::{InputPin}; //TODO: Remove when linux_embedded_hal implements InputPin struct HackInputPin<'a> { pin: &'a Pin } //TODO: Remove when linux_embedded_hal implements InputPin impl<'a> HackInputPin<'a> { fn new(p : &'a Pin) -> HackInputPin { HackInputPin { pin: p } } } //TODO: Remove when linux_embedded_hal implements InputPin // for now it defaults to is_low if an error appears // could be handled better! impl<'a> InputPin for HackInputPin<'a> { fn is_low(&self) -> bool { self.pin.get_value().unwrap_or(0) == 0 } fn is_high(&self) -> bool { !self.is_low() } } /* * * BE CAREFUL: this wasn't tested yet, and the pins are also not choosen correctly (just some random ones atm) * */ fn main() { run().unwrap(); } fn run() -> Result<(), std::io::Error> { // Configure SPI // SPI settings are from eink-waveshare-rs documenation let mut spi = Spidev::open("/dev/spidev0.0").expect("spidev directory"); let options = SpidevOptions::new() .bits_per_word(8) .max_speed_hz(4_000_000) .mode(spidev::SPI_MODE_0) .build(); spi.configure(&options).expect("spi configuration"); // Configure Digital I/O Pin to be used as Chip Select for SPI let cs_pin = Pin::new(26);//BCM7 CE0 cs_pin.export().expect("cs_pin export"); while !cs_pin.is_exported() {} cs_pin.set_direction(Direction::Out).expect("cs_pin Direction"); cs_pin.set_value(1).expect("cs_pin Value set to 1"); // Configure Busy Input Pin let busy = Pin::new(5);//pin 29 busy.export().expect("busy export"); while !busy.is_exported() {} busy.set_direction(Direction::In).expect("busy Direction"); //busy.set_value(1).expect("busy Value set to 1"); let busy_in = HackInputPin::new(&busy); // Configure Data/Command OutputPin let dc = Pin::new(6); //pin 31 //bcm6 dc.export().expect("dc export"); while !dc.is_exported() {} dc.set_direction(Direction::Out).expect("dc Direction"); dc.set_value(1).expect("dc Value set to 1"); // Configure Reset OutputPin let rst = Pin::new(16); //pin 36 //bcm16 rst.export().expect("rst export"); while !rst.is_exported() {} rst.set_direction(Direction::Out).expect("rst Direction"); rst.set_value(1).expect("rst Value set to 1"); // Configure Delay let delay = Delay {}; // Setup of the needed pins is finished here // Now the "real" usage of the eink-waveshare-rs crate begins let mut epd = EPD1in54::new(spi, cs_pin, busy_in, dc, rst, delay)?; // Clear the full screen epd.clear_frame(); epd.display_frame(); // Speeddemo let small_buffer = [Color::Black.get_byte_value(), 16 as u8 / 8 * 16 as u8]; let number_of_runs = 100; for i in 0..number_of_runs { let offset = i * 8 % 150; epd.update_partial_frame(&small_buffer, 25 + offset, 25 + offset, 16, 16)?; epd.display_frame()?; } // Clear the full screen epd.clear_frame(); epd.display_frame(); // Draw some squares let mut small_buffer = [Color::Black.get_byte_value(), 160 as u8 / 8 * 160 as u8]; epd.update_partial_frame(&small_buffer, 20, 20, 160, 160)?; small_buffer = [Color::White.get_byte_value(), 80 as u8 / 8 * 80 as u8]; epd.update_partial_frame(&small_buffer, 60, 60, 80, 80)?; small_buffer = [Color::Black.get_byte_value(), 8]; epd.update_partial_frame(&small_buffer, 96, 96, 8, 8)?; // Display updated frame epd.display_frame()?; // Set the EPD to sleep epd.sleep()?; Ok(()) }