Browse Source

Merge pull request #7 from Caemor/try_rustfmt

Formating and other beautifying improvements including some rustfmt changes
embedded-hal-1.0
Chris 7 years ago committed by GitHub
parent
commit
3c3f29aa98
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 4
      examples/embedded_linux_epd4in2/src/main.rs
  2. 12
      src/drawing/color.rs
  3. 39
      src/drawing/font.rs
  4. 297
      src/drawing/mod.rs
  5. 274
      src/epd1in54/mod.rs
  6. 282
      src/epd2in9/mod.rs
  7. 287
      src/epd4in2/command.rs
  8. 2
      src/epd4in2/constants.rs
  9. 274
      src/epd4in2/mod.rs
  10. 125
      src/interface/connection_interface.rs
  11. 179
      src/interface/mod.rs
  12. 55
      src/lib.rs
  13. 110
      src/type_a/command.rs

4
examples/embedded_linux_epd4in2/src/main.rs

@ -9,7 +9,6 @@ use eink_waveshare_rs::{
EPD4in2,
drawing::{Graphics, color::Color},
WaveshareInterface,
ConnectionInterface
};
use lin_hal::spidev::{self, SpidevOptions};
@ -104,8 +103,7 @@ fn main() {
//TODO: wait for Digital::InputPin
//fixed currently with the HackInputPin, see further above
let connection_interface = ConnectionInterface::new(spi, cs, busy_in, dc, rst, delay);
let mut epd4in2 = EPD4in2::new(connection_interface).expect("eink inialize error");
let mut epd4in2 = EPD4in2::new(spi, cs, busy_in, dc, rst, delay).expect("eink inialize error");
//let mut buffer = [0u8, epd4in2.get_width() / 8 * epd4in2.get_height()];
let mut buffer = [0u8; 15000];

12
src/drawing/color.rs

@ -1,7 +1,8 @@
/// Only for the B/W Displays atm
#[derive(Clone, Copy)]
pub enum Color {
Black,
White
White,
}
impl Color {
@ -9,7 +10,7 @@ impl Color {
pub fn get_bit_value(&self) -> u8 {
match self {
Color::White => 1u8,
Color::Black => 0u8,
Color::Black => 0u8,
}
}
@ -21,9 +22,8 @@ impl Color {
}
}
/// Get the color encoding of a specific bit in a byte
///
///
/// input is the byte where one bit is gonna be selected
/// pos is counted from the left (highest value) from 0 to 7
/// remember: 1 is white, 0 is black
@ -61,7 +61,7 @@ impl Color {
//TODO: does basically the same as get_color, so remove one of them?
pub(crate) fn convert_color(input: u8, pos: u8, foreground_color: &Color) -> Color {
//match color:
//match color:
// - white for "nothing to draw"/background drawing
// - black for pixel to draw
//
@ -72,4 +72,4 @@ impl Color {
Color::inverse_color(foreground_color)
}
}
}
}

39
src/drawing/font.rs

@ -11,20 +11,33 @@ pub struct Font<'a> {
first_char: u8,
last_char: u8,
bitmap: &'a [u8],
widthmap: &'a [u8]
widthmap: &'a [u8],
}
impl<'a> Font<'a> {
/// Panics if either Bitmap or Widthmap of the Font are to small for the amount and size of chars
pub fn new(width: u8, height: u8, first_char: u8, last_char: u8, bitmap: &'a [u8], widthmap: &'a [u8]) -> Font<'a> {
pub fn new(
width: u8,
height: u8,
first_char: u8,
last_char: u8,
bitmap: &'a [u8],
widthmap: &'a [u8],
) -> Font<'a> {
//Assertion so it shouldn't be able to panic later
let length_of_char = width as usize / 8 * height as usize;
let amount_of_chars = last_char as usize - first_char as usize + 1;
assert!(bitmap.len() >= amount_of_chars * length_of_char);
assert!(widthmap.len() >= amount_of_chars);
Font {width, height, first_char, last_char, bitmap, widthmap }
Font {
width,
height,
first_char,
last_char,
bitmap,
widthmap,
}
}
fn get_length_of_char(&self) -> usize {
@ -40,7 +53,7 @@ impl<'a> Font<'a> {
let start_pos = self.get_char_pos(input) * self.get_length_of_char();
let end_pos = start_pos + self.get_length_of_char();
&self.bitmap[start_pos .. end_pos]
&self.bitmap[start_pos..end_pos]
}
/// Can panic, when get_char_pos > widthmap.len(), should be caught in Font::new already
@ -49,7 +62,6 @@ impl<'a> Font<'a> {
}
}
#[cfg(test)]
mod tests {
use super::*;
@ -64,9 +76,10 @@ mod tests {
0x00, 0x00, 0x5F, 0x00, 0x00, 0x00, 0x00, 0x00, // '!'
0x00, 0x07, 0x00, 0x07, 0x00, 0x00, 0x00, 0x00, // '"'
0x14, 0x7F, 0x14, 0x7F, 0x14, 0x00, 0x00, 0x00, // '#'
0x14, 0x7F, 0x14, 0x7F, 0x14, 0x00, 0x00, 0x00]; // '$'
0x14, 0x7F, 0x14, 0x7F, 0x14, 0x00, 0x00, 0x00, // '$'
];
let widthmap = [8,8,8,8];
let widthmap = [8, 8, 8, 8];
let font = Font::new(8, 8, '!' as u8, '$' as u8, &bitmap, &widthmap);
@ -80,9 +93,6 @@ mod tests {
assert_eq!(font.get_char_width('$'), widthmap[3]);
}
#[test]
fn bitmap_8x8_test() {
let and = [0x36, 0x49, 0x55, 0x22, 0x50, 0x00, 0x00, 0x00];
@ -90,7 +100,7 @@ mod tests {
let first_value = [0x00, 0x00, 0x5F, 0x00, 0x00, 0x00, 0x00, 0x00];
let last_value = [0x00, 0x41, 0x36, 0x08, 0x00, 0x00, 0x00, 0x00];
assert_eq!(bitmap_8x8('&'), and);
assert_eq!(bitmap_8x8('&'), and);
assert_eq!(bitmap_8x8('ß'), zero);
assert_eq!(bitmap_8x8('°'), zero);
@ -98,13 +108,10 @@ mod tests {
assert_eq!(bitmap_8x8('!'), first_value);
assert_eq!(bitmap_8x8('}'), last_value);
assert_eq!(bitmap_8x8('0')[1], 0x3E);
assert_eq!(bitmap_8x8('0')[1], 0x3E);
}
}
//bad font as the order is not the one we want to use
//goes from bottom left -> up -> right
pub(crate) fn bitmap_8x8(input: char) -> [u8; 8] {

297
src/drawing/mod.rs

@ -1,11 +1,9 @@
pub mod font;
use self::font::Font;
pub mod color;
use self::color::Color;
#[derive(Clone, Copy)]
pub enum Displayorientation {
/// No rotation
@ -42,28 +40,30 @@ impl Display {
/// - Neccessary Buffersize
pub fn get_dimensions(&self) -> (u16, u16, u16) {
match self {
Display::Eink42BlackWhite => (400, 300, 15000)
Display::Eink42BlackWhite => (400, 300, 15000),
}
}
}
#[allow(dead_code)]
pub struct Graphics<'a> {
width: u16,
height: u16,
rotation: Displayorientation,
buffer: &'a mut [u8]
//buffer: Box<u8>//[u8; 15000],
buffer: &'a mut [u8], //buffer: Box<u8>//[u8; 15000]
}
impl<'a> Graphics<'a> {
/// width needs to be a multiple of 8!
pub fn new(width: u16, height: u16, buffer: &'a mut [u8]) -> Graphics<'a>{
pub fn new(width: u16, height: u16, buffer: &'a mut [u8]) -> Graphics<'a> {
let len = buffer.len();
assert!(width / 8 * height >= len as u16);
Graphics {width, height, rotation: Displayorientation::Rotate0, buffer}
Graphics {
width,
height,
rotation: Displayorientation::Rotate0,
buffer,
}
}
/// Clears/Fills the full buffer with `color`
@ -78,16 +78,18 @@ impl<'a> Graphics<'a> {
}
/// Draw a single Pixel with `color`
///
///
/// limited to i16::max images (buffer_size) at the moment
pub fn draw_pixel(&mut self, x: u16, y: u16, color: &Color) {
let (idx, bit) = match self.rotation {
Displayorientation::Rotate0 | Displayorientation::Rotate180
=> ((x as usize / 8 + (self.width as usize / 8) * y as usize) ,
0x80 >> (x % 8)),
Displayorientation::Rotate90 | Displayorientation::Rotate270
=> (y as usize / 8 * self.width as usize + x as usize,
0x80 >> (y % 8)),
Displayorientation::Rotate0 | Displayorientation::Rotate180 => (
(x as usize / 8 + (self.width as usize / 8) * y as usize),
0x80 >> (x % 8),
),
Displayorientation::Rotate90 | Displayorientation::Rotate270 => (
y as usize / 8 * self.width as usize + x as usize,
0x80 >> (y % 8),
),
};
if idx >= self.buffer.len() {
@ -96,8 +98,8 @@ impl<'a> Graphics<'a> {
match color {
Color::Black => {
self.buffer[idx] &= !bit;
},
self.buffer[idx] &= !bit;
}
Color::White => {
self.buffer[idx] |= bit;
}
@ -105,15 +107,17 @@ impl<'a> Graphics<'a> {
}
/// Draw a single Pixel with `color`
///
///
/// limited to i16::max images (buffer_size) at the moment
#[allow(dead_code)]
fn draw_byte(&mut self, x: u16, y: u16, filling: u8, color: &Color) {
let idx = match self.rotation {
Displayorientation::Rotate0 | Displayorientation::Rotate180
=> x as usize / 8 + (self.width as usize / 8) * y as usize,
Displayorientation::Rotate90 | Displayorientation::Rotate270
=> y as usize / 8 + (self.width as usize / 8) * x as usize,
Displayorientation::Rotate0 | Displayorientation::Rotate180 => {
x as usize / 8 + (self.width as usize / 8) * y as usize
},
Displayorientation::Rotate90 | Displayorientation::Rotate270 => {
y as usize / 8 + (self.width as usize / 8) * x as usize
},
};
if idx >= self.buffer.len() {
@ -122,7 +126,7 @@ impl<'a> Graphics<'a> {
match color {
Color::Black => {
self.buffer[idx] = !filling;
self.buffer[idx] = !filling;
},
Color::White => {
self.buffer[idx] = filling;
@ -145,7 +149,6 @@ impl<'a> Graphics<'a> {
}
}
//TODO: add support for font_height = 0
//TODO: add support for char offset in y direction to reduce font file size
fn draw_char_helper(&mut self, x0: u16, y0: u16, input: char, font: &Font, color: &Color) {
@ -156,18 +159,17 @@ impl<'a> Graphics<'a> {
let buff = font.get_char(input);
let char_width = font.get_char_width(input);
let mut row_counter = 0;
let mut width_counter = 0u8;
for &elem in buff.iter() {
for _ in 0..8 {
self.draw_pixel(
x0 + u16::from(width_counter),
y0 + row_counter,
&Color::get_color(elem, width_counter % 8, color),
);
self.draw_pixel(
x0 + u16::from(width_counter),
y0 + row_counter,
&Color::get_color(elem, width_counter % 8, color));
//Widthcounter shows how far we are in x direction
//Widthcounter shows how far we are in x direction
width_counter += 1;
// if we have reached
if width_counter >= char_width {
@ -185,39 +187,48 @@ impl<'a> Graphics<'a> {
// includes special draw_char instructions as this one is ordered columnwise and not rowwise (first byte == first 8 pixel columnwise)
for &elem in (&font::bitmap_8x8(input)).iter() {
for i in 0..8u8 {
self.draw_pixel(x0 + counter, y0 + 7 - u16::from(i), &Color::convert_color(elem, i, color))
self.draw_pixel(
x0 + counter,
y0 + 7 - u16::from(i),
&Color::convert_color(elem, i, color),
)
}
counter += 1;
}
}
/// Draws Strings with 8x8 Chars (1 pixel padding included)
///
///
/// Is quite small for the 400x300 E-Ink
///
///
/// no autobreak line yet
pub fn draw_string_8x8(&mut self, x0: u16, y0: u16, input: &str, color: &Color) {
for (counter, input_char) in input.chars().enumerate() {
self.draw_char_8x8(x0 + counter as u16*8, y0, input_char, color);
self.draw_char_8x8(
x0 + counter as u16 * 8,
y0,
input_char,
color,
);
}
}
// void plotLine(int x0, int y0, int x1, int y1)
// {
// int dx = abs(x1-x0), sx = x0<x1 ? 1 : -1;
// int dy = -abs(y1-y0), sy = y0<y1 ? 1 : -1;
// int err = dx+dy, e2; /* error value e_xy */
// for(;;){ /* loop */
// setPixel(x0,y0);
// if (x0==x1 && y0==y1) break;
// e2 = 2*err;
// if (e2 >= dy) { err += dy; x0 += sx; } /* e_xy+e_x > 0 */
// if (e2 <= dx) { err += dx; y0 += sy; } /* e_xy+e_y < 0 */
// }
// }
// void plotLine(int x0, int y0, int x1, int y1)
// {
// int dx = abs(x1-x0), sx = x0<x1 ? 1 : -1;
// int dy = -abs(y1-y0), sy = y0<y1 ? 1 : -1;
// int err = dx+dy, e2; /* error value e_xy */
// for(;;){ /* loop */
// setPixel(x0,y0);
// if (x0==x1 && y0==y1) break;
// e2 = 2*err;
// if (e2 >= dy) { err += dy; x0 += sx; } /* e_xy+e_x > 0 */
// if (e2 <= dx) { err += dx; y0 += sy; } /* e_xy+e_y < 0 */
// }
// }
//bresenham algorithm for lines
/// draw line
/// draw line
pub fn draw_line(&mut self, x0: u16, y0: u16, x1: u16, y1: u16, color: &Color) {
let mut x0 = x0 as i16;
let x1 = x1 as i16;
@ -227,9 +238,9 @@ impl<'a> Graphics<'a> {
let dx = i16::abs(x1 - x0);
let sx = if x0 < x1 { 1 } else { -1 };
let dy = - i16::abs(y1 - y0);
let dy = -i16::abs(y1 - y0);
let sy = if y0 < y1 { 1 } else { -1 };
let mut err = dx + dy;
loop {
@ -239,7 +250,7 @@ impl<'a> Graphics<'a> {
break;
}
let e2 = 2*err;
let e2 = 2 * err;
if e2 >= dy {
err += dy;
@ -253,7 +264,7 @@ impl<'a> Graphics<'a> {
}
}
/// Draw a horizontal line
/// Draw a horizontal line
/// TODO: maybe optimize by grouping up the bytes? But is it worth the longer and more complicated function? is it even faster?
pub fn draw_horizontal_line(&mut self, x: u16, y: u16, length: u16, color: &Color) {
for i in 0..length {
@ -297,69 +308,63 @@ impl<'a> Graphics<'a> {
}
}
fn draw_circle_helper(&mut self, x0: u16, y0: u16, radius: u16, filled: bool, color: &Color) {
let mut x = radius - 1;
let mut y = 0;
let mut dx = 1;
let mut dy = 1;
let mut err: i16 = dx - 2 * radius as i16;
fn draw_circle_helper(&mut self, x0: u16, y0: u16, radius: u16, filled: bool, color: &Color) {
let mut x = radius - 1;
let mut y = 0;
let mut dx = 1;
let mut dy = 1;
let mut err: i16 = dx - 2 * radius as i16;
while x >= y {
if filled {
self.circle_helper_filled_putpixel(x0, y0, x, y, color);
} else {
self.circle_helper_putpixel(x0, y0, x, y, color);
}
while x >= y {
if filled {
self.circle_helper_filled_putpixel(x0, y0, x, y, color);
} else {
self.circle_helper_putpixel(x0, y0, x, y, color);
}
if err <= 0 {
y += 1;
err += dy;
dy += 2;
}
if err <= 0 {
y += 1;
err += dy;
dy += 2;
}
if err > 0 {
x -= 1;
dx += 2;
err += dx - 2 * radius as i16;
if err > 0 {
x -= 1;
dx += 2;
err += dx - 2 * radius as i16;
}
}
}
}
fn circle_helper_putpixel(&mut self, x0: u16, y0: u16, x: u16, y: u16, color: &Color) {
self.draw_horizontal_line(x0 - x, y0 + y, 2*x, color);
// self.draw_pixel(buffer, x0 + x, y0 + y, color);
// self.draw_pixel(buffer, x0 - x, y0 + y, color);
self.draw_horizontal_line(x0 - y, y0 + x, 2*y, color);
// self.draw_pixel(buffer, x0 + y, y0 + x, color);
// self.draw_pixel(buffer, x0 - y, y0 + x, color);
self.draw_horizontal_line(x0 - x, y0 - y, 2*x, color);
// self.draw_pixel(buffer, x0 - x, y0 - y, color);
// self.draw_pixel(buffer, x0 + x, y0 - y, color);
self.draw_horizontal_line(x0 - y, y0 - y, 2*y, color);
// self.draw_pixel(buffer, x0 - y, y0 - x, color);
// self.draw_pixel(buffer, x0 + y, y0 - x, color);
}
fn circle_helper_putpixel(&mut self, x0: u16, y0: u16, x: u16, y: u16, color: &Color) {
self.draw_horizontal_line(x0 - x, y0 + y, 2 * x, color);
// self.draw_pixel(buffer, x0 + x, y0 + y, color);
// self.draw_pixel(buffer, x0 - x, y0 + y, color);
//TODO: Test
fn circle_helper_filled_putpixel(&mut self, x0: u16, y0: u16, x: u16, y: u16, color: &Color) {
self.draw_pixel(x0 + x, y0 + y, color);
self.draw_pixel(x0 + y, y0 + x, color);
self.draw_pixel(x0 - y, y0 + x, color);
self.draw_pixel(x0 - x, y0 + y, color);
self.draw_pixel(x0 - x, y0 - y, color);
self.draw_pixel(x0 - y, y0 - x, color);
self.draw_pixel(x0 + y, y0 - x, color);
self.draw_pixel(x0 + x, y0 - y, color);
}
self.draw_horizontal_line(x0 - y, y0 + x, 2 * y, color);
// self.draw_pixel(buffer, x0 + y, y0 + x, color);
// self.draw_pixel(buffer, x0 - y, y0 + x, color);
self.draw_horizontal_line(x0 - x, y0 - y, 2 * x, color);
// self.draw_pixel(buffer, x0 - x, y0 - y, color);
// self.draw_pixel(buffer, x0 + x, y0 - y, color);
self.draw_horizontal_line(x0 - y, y0 - y, 2 * y, color);
// self.draw_pixel(buffer, x0 - y, y0 - x, color);
// self.draw_pixel(buffer, x0 + y, y0 - x, color);
}
//TODO: Test
fn circle_helper_filled_putpixel(&mut self, x0: u16, y0: u16, x: u16, y: u16, color: &Color) {
self.draw_pixel(x0 + x, y0 + y, color);
self.draw_pixel(x0 + y, y0 + x, color);
self.draw_pixel(x0 - y, y0 + x, color);
self.draw_pixel(x0 - x, y0 + y, color);
self.draw_pixel(x0 - x, y0 - y, color);
self.draw_pixel(x0 - y, y0 - x, color);
self.draw_pixel(x0 + y, y0 - x, color);
self.draw_pixel(x0 + x, y0 - y, color);
}
///TODO: test if circle looks good
/// Draws a circle
@ -373,7 +378,7 @@ fn circle_helper_filled_putpixel(&mut self, x0: u16, y0: u16, x: u16, y: u16, c
let radius = radius as i16;
let x_mid = x as i16;
let y_mid = y as i16;
let mut x_pos: i16 = 0 - radius;
let mut x_pos: i16 = 0 - radius;
let mut y_pos = 0;
let mut err: i16 = 2 - 2 * radius;
@ -387,12 +392,12 @@ fn circle_helper_filled_putpixel(&mut self, x0: u16, y0: u16, x: u16, y: u16, c
if radius <= y_pos {
y_pos += 1;
err += y_pos*2 + 1;
err += y_pos * 2 + 1;
}
if radius > x_pos || err > y_pos {
x_pos += 1;
err += x_pos*2 + 1;
err += x_pos * 2 + 1;
}
if x_pos >= 0 {
@ -401,16 +406,12 @@ fn circle_helper_filled_putpixel(&mut self, x0: u16, y0: u16, x: u16, y: u16, c
}
}
///TODO: test!
pub fn draw_filled_circle(&mut self, x0: u16, y0: u16, radius: u16, color: &Color) {
self.draw_circle_helper(x0, y0, radius, true, color);
}
}
/*
############ ############ ############ ############
@ -424,8 +425,6 @@ fn circle_helper_filled_putpixel(&mut self, x0: u16, y0: u16, x: u16, y: u16, c
*/
#[cfg(test)]
mod graphics {
use super::*;
@ -435,15 +434,12 @@ mod graphics {
let mut buffer = [Color::White.get_byte_value(); 150];
let mut graphics = Graphics::new(40, 30, &mut buffer);
graphics.draw_filled_rectangle(0, 0, 40, 30, &Color::Black);
assert_eq!(graphics.buffer[0], Color::Black.get_byte_value());
for &elem in graphics.buffer.iter() {
assert_eq!(elem, Color::Black.get_byte_value());
}
}
/// draw a 4x4 in the top left corner
@ -452,12 +448,12 @@ mod graphics {
let mut buffer = [Color::White.get_byte_value(); 8];
let mut graphics = Graphics::new(8, 8, &mut buffer);
graphics.draw_filled_rectangle(0, 0, 4, 4, &Color::Black);
assert_eq!(graphics.buffer[0], 0x0f);
let mut counter = 0;
for &elem in graphics.buffer.iter() {
counter += 1;
counter += 1;
if counter <= 4 {
assert_eq!(elem, 0x0f);
@ -465,8 +461,6 @@ mod graphics {
assert_eq!(elem, Color::White.get_byte_value());
}
}
}
#[test]
@ -474,7 +468,7 @@ mod graphics {
let mut buffer = [Color::White.get_byte_value(); 4];
let mut graphics = Graphics::new(16, 2, &mut buffer);
graphics.draw_horizontal_line(1, 0, 14, &Color::Black);
assert_eq!(graphics.buffer[0], 0x80);
assert_eq!(graphics.buffer[1], 0x01);
assert_eq!(graphics.buffer[2], Color::White.get_byte_value());
@ -488,12 +482,10 @@ mod graphics {
graphics.draw_vertical_line(0, 0, 8, &Color::Black);
graphics.draw_vertical_line(5, 0, 8, &Color::Black);
assert_eq!(graphics.buffer[0], 0x7b);
for &elem in graphics.buffer.iter() {
assert_eq!(elem, 0x7bu8);
}
}
@ -509,9 +501,9 @@ mod graphics {
let mut buffer2 = [Color::White.get_byte_value(); 8];
let mut graphics2 = Graphics::new(8, 8, &mut buffer2);
graphics2.draw_line(5, 0, 5, 8, &Color::Black);
graphics2.draw_line(5, 0, 5, 8, &Color::Black);
for i in 0..graphics.buffer.len() {
for i in 0..graphics.buffer.len() {
assert_eq!(graphics.buffer[i], graphics2.buffer[i]);
}
}
@ -525,9 +517,9 @@ mod graphics {
let mut buffer2 = [Color::White.get_byte_value(); 4];
let mut graphics2 = Graphics::new(16, 2, &mut buffer2);
graphics2.draw_line(1, 0, 14, 0, &Color::Black);
graphics2.draw_line(1, 0, 14, 0, &Color::Black);
for i in 0..graphics.buffer.len() {
for i in 0..graphics.buffer.len() {
assert_eq!(graphics.buffer[i], graphics2.buffer[i]);
}
}
@ -538,15 +530,13 @@ mod graphics {
let mut buffer = [Color::White.get_byte_value(); 8];
let mut graphics = Graphics::new(8, 8, &mut buffer);
graphics.draw_line(0, 0, 16, 16, &Color::Black);
graphics.draw_line(0, 0, 16, 16, &Color::Black);
for i in 0..graphics.buffer.len() {
for i in 0..graphics.buffer.len() {
assert_eq!(graphics.buffer[i], !(0x80 >> i % 8));
}
}
#[test]
fn test_pixel() {
let mut buffer = [Color::White.get_byte_value(); 8];
@ -555,7 +545,6 @@ mod graphics {
assert_eq!(graphics.buffer[0], !0x40);
let mut buffer = [Color::White.get_byte_value(); 16];
let mut graphics = Graphics::new(16, 8, &mut buffer);
graphics.draw_pixel(9, 0, &Color::Black);
@ -573,15 +562,14 @@ mod graphics {
for i in 1..graphics.buffer.len() {
assert_eq!(graphics.buffer[i], Color::White.get_byte_value());
}
}
graphics.draw_byte(0, 0, 0x5A, &Color::Black) ;
graphics.draw_byte(0, 0, 0x5A, &Color::Black);
assert_eq!(graphics.buffer[0], !0x5A);
}
#[test]
fn test_char_with_8x8_font() {
// Test !
let mut buffer = [Color::White.get_byte_value(); 8];
let mut graphics = Graphics::new(8, 8, &mut buffer);
@ -592,8 +580,7 @@ mod graphics {
}
assert_eq!(graphics.buffer[5], Color::White.get_byte_value());
assert_eq!(graphics.buffer[6], !0x20);
assert_eq!(graphics.buffer[7], Color::White.get_byte_value());
assert_eq!(graphics.buffer[7], Color::White.get_byte_value());
// Test H
let mut buffer = [Color::White.get_byte_value(); 8];
@ -603,36 +590,34 @@ mod graphics {
for i in 0..3 {
assert_eq!(graphics.buffer[i], !0x88);
}
assert_eq!(graphics.buffer[3], !0xF8);
assert_eq!(graphics.buffer[3], !0xF8);
for i in 4..7 {
assert_eq!(graphics.buffer[i], !0x88);
}
assert_eq!(graphics.buffer[7], Color::White.get_byte_value());
assert_eq!(graphics.buffer[7], Color::White.get_byte_value());
}
#[test]
fn test_string_with_8x8_font() {
// Test !H
let mut buffer = [Color::White.get_byte_value(); 16];
let mut graphics = Graphics::new(16, 8, &mut buffer);
graphics.draw_string_8x8(0, 0, "!H", &Color::Black);
for i in 0..5 {
assert_eq!(graphics.buffer[i*2], !0x20);
assert_eq!(graphics.buffer[i * 2], !0x20);
}
assert_eq!(graphics.buffer[5*2], Color::White.get_byte_value());
assert_eq!(graphics.buffer[6*2], !0x20);
assert_eq!(graphics.buffer[7*2], Color::White.get_byte_value());
assert_eq!(graphics.buffer[5 * 2], Color::White.get_byte_value());
assert_eq!(graphics.buffer[6 * 2], !0x20);
assert_eq!(graphics.buffer[7 * 2], Color::White.get_byte_value());
for i in 0..3 {
assert_eq!(graphics.buffer[i*2 + 1], !0x88);
assert_eq!(graphics.buffer[i * 2 + 1], !0x88);
}
assert_eq!(graphics.buffer[3*2 + 1], !0xF8);
assert_eq!(graphics.buffer[3 * 2 + 1], !0xF8);
for i in 4..7 {
assert_eq!(graphics.buffer[i*2 + 1], !0x88);
assert_eq!(graphics.buffer[i * 2 + 1], !0x88);
}
assert_eq!(graphics.buffer[7*2 + 1], Color::White.get_byte_value());
assert_eq!(graphics.buffer[7 * 2 + 1], Color::White.get_byte_value());
}
}
}

274
src/epd1in54/mod.rs

@ -1,5 +1,5 @@
//! A simple Driver for the Waveshare 1.54" E-Ink Display via SPI
//!
//!
//!
//! # Examples from the 4.2" Display. It should work the same for the 1.54" one.
//!
@ -7,15 +7,15 @@
//! let mut epd4in2 = EPD4in2::new(spi, cs, busy, dc, rst, delay).unwrap();
//!
//! let mut buffer = [0u8, epd4in2.get_width() / 8 * epd4in2.get_height()];
//!
//!
//! // draw something into the buffer
//!
//!
//! epd4in2.display_and_transfer_buffer(buffer, None);
//!
//!
//! // wait and look at the image
//!
//!
//! epd4in2.clear_frame(None);
//!
//!
//! epd4in2.sleep();
//! ```
@ -25,210 +25,185 @@ const HEIGHT: u16 = 200;
const DEFAULT_BACKGROUND_COLOR: Color = Color::White;
use hal::{
blocking::{
spi::Write,
delay::*
},
digital::*
blocking::{delay::*, spi::Write},
digital::*,
};
use type_a::{
LUT_FULL_UPDATE,
LUT_PARTIAL_UPDATE,
command::Command
};
use type_a::{command::Command, LUT_FULL_UPDATE, LUT_PARTIAL_UPDATE};
use drawing::color::Color;
use interface::*;
use interface::connection_interface::ConnectionInterface;
/// EPD1in54 driver
///
pub struct EPD1in54<SPI, CS, BUSY, DataCommand, RST, Delay> {
pub struct EPD1in54<SPI, CS, BUSY, DC, RST, Delay> {
/// SPI
interface: ConnectionInterface<SPI, CS, BUSY, DataCommand, RST, Delay>,
interface: ConnectionInterface<SPI, CS, BUSY, DC, RST, Delay>,
/// EPD (width, height)
//epd: EPD,
/// Color
background_color: Color,
background_color: Color,
}
impl<SPI, CS, BUSY, DataCommand, RST, Delay, E> EPD1in54<SPI, CS, BUSY, DataCommand, RST, Delay>
where
impl<SPI, CS, BUSY, DC, RST, Delay, E> EPD1in54<SPI, CS, BUSY, DC, RST, Delay>
where
SPI: Write<u8, Error = E>,
CS: OutputPin,
BUSY: InputPin,
DataCommand: OutputPin,
RST: OutputPin,
Delay: DelayUs<u16> + DelayMs<u16>
{
}
impl<SPI, CS, BUSY, DataCommand, RST, Delay, E> WaveshareInterface<SPI, CS, BUSY, DataCommand, RST, Delay, E>
for EPD1in54<SPI, CS, BUSY, DataCommand, RST, Delay>
where
SPI: Write<u8, Error = E>,
CS: OutputPin,
BUSY: InputPin,
DataCommand: OutputPin,
DC: OutputPin,
RST: OutputPin,
Delay: DelayUs<u16> + DelayMs<u16>,
{
fn get_width(&self) -> u16 {
WIDTH
}
fn get_height(&self) -> u16 {
HEIGHT
}
fn new(
interface: ConnectionInterface<SPI, CS, BUSY, DataCommand, RST, Delay>
) -> Result<Self, E> {
let mut epd = EPD1in54 {interface, background_color: DEFAULT_BACKGROUND_COLOR};
epd.init()?;
Ok(epd)
}
{
fn init(&mut self) -> Result<(), E> {
self.reset();
self.interface.reset();
// 3 Databytes:
// A[7:0]
// 0.. A[8]
// 0.. B[2:0]
// Default Values: A = Height of Screen (0x127), B = 0x00 (GD, SM and TB=0?)
self.interface.send_command(Command::DRIVER_OUTPUT_CONTROL)?;
self.interface.send_data(HEIGHT as u8)?;
self.interface.send_data((HEIGHT >> 8) as u8)?;
self.interface.send_data(0x00)?;
self.interface.command(Command::DRIVER_OUTPUT_CONTROL)?;
self.interface.data(HEIGHT as u8)?;
self.interface.data((HEIGHT >> 8) as u8)?;
self.interface.data(0x00)?;
// 3 Databytes: (and default values from datasheet and arduino)
// 1 .. A[6:0] = 0xCF | 0xD7
// 1 .. B[6:0] = 0xCE | 0xD6
// 1 .. C[6:0] = 0x8D | 0x9D
//TODO: test
self.interface.send_command(Command::BOOSTER_SOFT_START_CONTROL)?;
self.interface.send_data(0xD7)?;
self.interface.send_data(0xD6)?;
self.interface.send_data(0x9D)?;
self.interface.command(Command::BOOSTER_SOFT_START_CONTROL)?;
self.interface.data(0xD7)?;
self.interface.data(0xD6)?;
self.interface.data(0x9D)?;
// One Databyte with value 0xA8 for 7V VCOM
self.interface.send_command(Command::WRITE_VCOM_REGISTER)?;
self.interface.send_data(0xA8)?;
self.interface.command_with_data(Command::WRITE_VCOM_REGISTER, &[0xA8])?;
// One Databyte with default value 0x1A for 4 dummy lines per gate
self.interface.send_command(Command::SET_DUMMY_LINE_PERIOD)?;
self.interface.send_data(0x1A)?;
self.interface.command_with_data(Command::SET_DUMMY_LINE_PERIOD, &[0x1A])?;
// One Databyte with default value 0x08 for 2us per line
self.interface.send_command(Command::SET_GATE_LINE_WIDTH)?;
self.interface.send_data(0x08)?;
self.interface.command_with_data(Command::SET_GATE_LINE_WIDTH, &[0x08])?;
// One Databyte with default value 0x03
// -> address: x increment, y increment, address counter is updated in x direction
self.interface.send_command(Command::DATA_ENTRY_MODE_SETTING)?;
self.interface.send_data(0x03)?;
self.interface.command_with_data(Command::DATA_ENTRY_MODE_SETTING, &[0x03])?;
self.set_lut()
}
fn sleep(&mut self) -> Result<(), E> {
}
self.interface.send_command(Command::DEEP_SLEEP_MODE)?;
// 0x00 for Normal mode (Power on Reset), 0x01 for Deep Sleep Mode
//TODO: is 0x00 needed here?
self.interface.send_data(0x00)?;
impl<SPI, CS, BUSY, DC, RST, Delay, E> WaveshareInterface<SPI, CS, BUSY, DC, RST, Delay, E>
for EPD1in54<SPI, CS, BUSY, DC, RST, Delay>
where
SPI: Write<u8, Error = E>,
CS: OutputPin,
BUSY: InputPin,
DC: OutputPin,
RST: OutputPin,
Delay: DelayUs<u16> + DelayMs<u16>,
{
fn get_width(&self) -> u16 {
WIDTH
}
self.wait_until_idle();
Ok(())
fn get_height(&self) -> u16 {
HEIGHT
}
fn new(
spi: SPI, cs: CS, busy: BUSY, dc: DC, rst: RST, delay: Delay,
) -> Result<Self, E> {
let interface = ConnectionInterface::new(spi, cs, busy, dc, rst, delay);
let mut epd = EPD1in54 {
interface,
background_color: DEFAULT_BACKGROUND_COLOR,
};
epd.init()?;
fn reset(&mut self) {
self.interface.reset()
Ok(epd)
}
fn delay_ms(&mut self, delay: u16) {
self.interface.delay_ms(delay)
fn wake_up(&mut self) -> Result<(), E> {
self.init()
}
fn update_frame(&mut self, buffer: &[u8]) -> Result<(), E>{
self.use_full_frame()?;
fn sleep(&mut self) -> Result<(), E> {
// 0x00 for Normal mode (Power on Reset), 0x01 for Deep Sleep Mode
//TODO: is 0x00 needed here or would 0x01 be even more efficient?
self.interface.command_with_data(Command::DEEP_SLEEP_MODE, &[0x00])?;
self.interface.send_command(Command::WRITE_RAM)?;
self.interface.send_multiple_data(buffer)
self.wait_until_idle();
Ok(())
}
fn delay_ms(&mut self, delay: u16) {
self.interface.delay_ms(delay)
}
fn update_frame(&mut self, buffer: &[u8]) -> Result<(), E> {
self.use_full_frame()?;
self.interface.command_with_data(Command::WRITE_RAM, buffer)
}
//TODO: update description: last 3 bits will be ignored for width and x_pos
fn update_partial_frame(&mut self, buffer: &[u8], x: u16, y: u16, width: u16, height: u16) -> Result<(), E>{
fn update_partial_frame(
&mut self,
buffer: &[u8],
x: u16,
y: u16,
width: u16,
height: u16,
) -> Result<(), E> {
self.set_ram_area(x, y, x + width, y + height)?;
self.set_ram_counter(x, y)?;
self.interface.send_command(Command::WRITE_RAM)?;
self.interface.send_multiple_data(buffer)
self.interface.command_with_data(Command::WRITE_RAM, buffer)
}
fn display_frame(&mut self) -> Result<(), E>{
fn display_frame(&mut self) -> Result<(), E> {
// enable clock signal, enable cp, display pattern -> 0xC4 (tested with the arduino version)
//TODO: test control_1 or control_2 with default value 0xFF (from the datasheet)
self.interface.send_command(Command::DISPLAY_UPDATE_CONTROL_2)?;
self.interface.send_data(0xC4)?;
self.interface.command_with_data(Command::DISPLAY_UPDATE_CONTROL_2, &[0xC4])?;
self.interface.send_command(Command::MASTER_ACTIVATION)?;
self.interface.command(Command::MASTER_ACTIVATION)?;
// MASTER Activation should not be interupted to avoid currption of panel images
// therefore a terminate command is send
self.interface.send_command(Command::TERMINATE_COMMANDS_AND_FRAME_WRITE)
}
fn update_and_display_frame(&mut self, buffer: &[u8]) -> Result<(), E>{
self.update_frame(buffer)?;
self.display_frame()
self.interface.command(Command::NOP)
}
fn clear_frame(&mut self) -> Result<(), E>{
fn clear_frame(&mut self) -> Result<(), E> {
self.use_full_frame()?;
// clear the ram with the background color
let color = self.background_color.get_byte_value();
self.interface.send_command(Command::WRITE_RAM)?;
self.interface.send_data_x_times(color, WIDTH / 8 * HEIGHT)
self.interface.command(Command::WRITE_RAM)?;
self.interface.data_x_times(color, WIDTH / 8 * HEIGHT)
}
/// Sets the backgroundcolor for various commands like [WaveshareInterface::clear_frame()](clear_frame())
fn set_background_color(&mut self, background_color: Color){
fn set_background_color(&mut self, background_color: Color) {
self.background_color = background_color;
}
fn background_color(&self) -> &Color {
&self.background_color
}
}
impl<SPI, CS, BUSY, DC, RST, D, E> EPD1in54<SPI, CS, BUSY, DC, RST, D>
where
where
SPI: Write<u8, Error = E>,
CS: OutputPin,
BUSY: InputPin,
@ -239,54 +214,62 @@ where
fn wait_until_idle(&mut self) {
self.interface.wait_until_idle(false);
}
pub(crate) fn use_full_frame(&mut self) -> Result<(), E> {
// choose full frame/ram
self.set_ram_area(0, 0, WIDTH - 1, HEIGHT - 1)?;
// start from the beginning
self.set_ram_counter(0,0)
self.set_ram_counter(0, 0)
}
pub(crate) fn set_ram_area(&mut self, start_x: u16, start_y: u16, end_x: u16, end_y: u16) -> Result<(), E> {
pub(crate) fn set_ram_area(
&mut self,
start_x: u16,
start_y: u16,
end_x: u16,
end_y: u16,
) -> Result<(), E> {
assert!(start_x < end_x);
assert!(start_y < end_y);
// x is positioned in bytes, so the last 3 bits which show the position inside a byte in the ram
// aren't relevant
self.interface.send_command(Command::SET_RAM_X_ADDRESS_START_END_POSITION)?;
self.interface.send_data((start_x >> 3) as u8)?;
self.interface.send_data((end_x >> 3) as u8)?;
// aren't relevant
self.interface.command(Command::SET_RAM_X_ADDRESS_START_END_POSITION)?;
self.interface.data((start_x >> 3) as u8)?;
self.interface.data((end_x >> 3) as u8)?;
// 2 Databytes: A[7:0] & 0..A[8] for each - start and end
self.interface.send_command(Command::SET_RAM_Y_ADDRESS_START_END_POSITION)?;
self.interface.send_data(start_y as u8)?;
self.interface.send_data((start_y >> 8) as u8)?;
self.interface.send_data(end_y as u8)?;
self.interface.send_data((end_y >> 8) as u8)
self.interface.command(Command::SET_RAM_Y_ADDRESS_START_END_POSITION)?;
self.interface.data(start_y as u8)?;
self.interface.data((start_y >> 8) as u8)?;
self.interface.data(end_y as u8)?;
self.interface.data((end_y >> 8) as u8)
}
pub(crate) fn set_ram_counter(&mut self, x: u16, y: u16) -> Result<(), E> {
// x is positioned in bytes, so the last 3 bits which show the position inside a byte in the ram
// aren't relevant
self.interface.send_command(Command::SET_RAM_X_ADDRESS_COUNTER)?;
self.interface.send_data((x >> 3) as u8)?;
self.interface.command_with_data(Command::SET_RAM_X_ADDRESS_COUNTER, &[(x >> 3) as u8])?;
// 2 Databytes: A[7:0] & 0..A[8]
self.interface.send_command(Command::SET_RAM_Y_ADDRESS_COUNTER)?;
self.interface.send_data(y as u8)?;
self.interface.send_data((y >> 8) as u8)?;
self.interface.command_with_data(
Command::SET_RAM_Y_ADDRESS_COUNTER,
&[
y as u8,
(y >> 8) as u8
])?;
self.wait_until_idle();
Ok(())
}
/// Uses the slower full update
/// Uses the slower full update
pub fn set_lut(&mut self) -> Result<(), E> {
self.set_lut_helper(&LUT_FULL_UPDATE)
}
/// Uses the quick partial refresh
/// Uses the quick partial refresh
pub fn set_lut_quick(&mut self) -> Result<(), E> {
self.set_lut_helper(&LUT_PARTIAL_UPDATE)
}
@ -296,11 +279,8 @@ where
// self.set_lut_helper(buffer)
//}
fn set_lut_helper(&mut self, buffer: &[u8]) -> Result<(), E> {
assert!(buffer.len() == 30);
self.interface.send_command(Command::WRITE_LUT_REGISTER)?;
self.interface.send_multiple_data(buffer)
self.interface.command_with_data(Command::WRITE_LUT_REGISTER, buffer)
}
}
}

282
src/epd2in9/mod.rs

@ -1,5 +1,5 @@
//! A simple Driver for the Waveshare 2.9" E-Ink Display via SPI
//!
//!
//!
//! # Examples from the 4.2" Display. It should work the same for the 2.9" one.
//!
@ -7,15 +7,15 @@
//! let mut epd4in2 = EPD4in2::new(spi, cs, busy, dc, rst, delay).unwrap();
//!
//! let mut buffer = [0u8, epd4in2.get_width() / 8 * epd4in2.get_height()];
//!
//!
//! // draw something into the buffer
//!
//!
//! epd4in2.display_and_transfer_buffer(buffer, None);
//!
//!
//! // wait and look at the image
//!
//!
//! epd4in2.clear_frame(None);
//!
//!
//! epd4in2.sleep();
//! ```
@ -24,214 +24,208 @@ const HEIGHT: u16 = 296;
const DEFAULT_BACKGROUND_COLOR: Color = Color::White;
use hal::{
blocking::{
spi::Write,
delay::*
},
digital::*
blocking::{delay::*, spi::Write},
digital::*,
};
use type_a::{
LUT_FULL_UPDATE,
LUT_PARTIAL_UPDATE,
command::Command
};
use type_a::{command::Command, LUT_FULL_UPDATE, LUT_PARTIAL_UPDATE};
use drawing::color::Color;
use interface::*;
use interface::connection_interface::ConnectionInterface;
/// EPD2in9 driver
///
pub struct EPD2in9<SPI, CS, BUSY, DataCommand, RST, Delay> {
pub struct EPD2in9<SPI, CS, BUSY, DC, RST, Delay> {
/// SPI
interface: ConnectionInterface<SPI, CS, BUSY, DataCommand, RST, Delay>,
interface: ConnectionInterface<SPI, CS, BUSY, DC, RST, Delay>,
/// EPD (width, height)
//epd: EPD,
/// Color
background_color: Color,
background_color: Color,
}
impl<SPI, CS, BUSY, DataCommand, RST, Delay, E> EPD2in9<SPI, CS, BUSY, DataCommand, RST, Delay>
where
SPI: Write<u8, Error = E>,
CS: OutputPin,
BUSY: InputPin,
DataCommand: OutputPin,
RST: OutputPin,
Delay: DelayUs<u16> + DelayMs<u16>
{
}
impl<SPI, CS, BUSY, DataCommand, RST, Delay, E> WaveshareInterface<SPI, CS, BUSY, DataCommand, RST, Delay, E>
for EPD2in9<SPI, CS, BUSY, DataCommand, RST, Delay>
where
impl<SPI, CS, BUSY, DC, RST, Delay, E> EPD2in9<SPI, CS, BUSY, DC, RST, Delay>
where
SPI: Write<u8, Error = E>,
CS: OutputPin,
BUSY: InputPin,
DataCommand: OutputPin,
DC: OutputPin,
RST: OutputPin,
Delay: DelayUs<u16> + DelayMs<u16>,
{
fn get_width(&self) -> u16 {
WIDTH
}
fn get_height(&self) -> u16 {
HEIGHT
}
fn new(
interface: ConnectionInterface<SPI, CS, BUSY, DataCommand, RST, Delay>
) -> Result<Self, E> {
//let epd = EPD::new(WIDTH, HEIGHT);
//let background_color = Color::White;
let mut epd = EPD2in9 {interface, background_color: DEFAULT_BACKGROUND_COLOR};
epd.init()?;
Ok(epd)
}
{
fn init(&mut self) -> Result<(), E> {
self.reset();
self.interface.reset();
// 3 Databytes:
// A[7:0]
// 0.. A[8]
// 0.. B[2:0]
// Default Values: A = Height of Screen (0x127), B = 0x00 (GD, SM and TB=0?)
self.interface.send_command(Command::DRIVER_OUTPUT_CONTROL)?;
self.interface.send_data(HEIGHT as u8)?;
self.interface.send_data((HEIGHT >> 8) as u8)?;
self.interface.send_data(0x00)?;
self.interface.command(Command::DRIVER_OUTPUT_CONTROL)?;
self.interface.data(HEIGHT as u8)?;
self.interface.data((HEIGHT >> 8) as u8)?;
self.interface.data(0x00)?;
// 3 Databytes: (and default values from datasheet and arduino)
// 1 .. A[6:0] = 0xCF | 0xD7
// 1 .. B[6:0] = 0xCE | 0xD6
// 1 .. C[6:0] = 0x8D | 0x9D
//TODO: test
self.interface.send_command(Command::BOOSTER_SOFT_START_CONTROL)?;
self.interface.send_data(0xD7)?;
self.interface.send_data(0xD6)?;
self.interface.send_data(0x9D)?;
self.interface.command(Command::BOOSTER_SOFT_START_CONTROL)?;
self.interface.data(0xD7)?;
self.interface.data(0xD6)?;
self.interface.data(0x9D)?;
// One Databyte with value 0xA8 for 7V VCOM
self.interface.send_command(Command::WRITE_VCOM_REGISTER)?;
self.interface.send_data(0xA8)?;
self.interface.command(Command::WRITE_VCOM_REGISTER)?;
self.interface.data(0xA8)?;
// One Databyte with default value 0x1A for 4 dummy lines per gate
self.interface.send_command(Command::SET_DUMMY_LINE_PERIOD)?;
self.interface.send_data(0x1A)?;
self.interface.command(Command::SET_DUMMY_LINE_PERIOD)?;
self.interface.data(0x1A)?;
// One Databyte with default value 0x08 for 2us per line
self.interface.send_command(Command::SET_GATE_LINE_WIDTH)?;
self.interface.send_data(0x08)?;
self.interface.command(Command::SET_GATE_LINE_WIDTH)?;
self.interface.data(0x08)?;
// One Databyte with default value 0x03
// -> address: x increment, y increment, address counter is updated in x direction
self.interface.send_command(Command::DATA_ENTRY_MODE_SETTING)?;
self.interface.send_data(0x03)?;
self.interface.command(Command::DATA_ENTRY_MODE_SETTING)?;
self.interface.data(0x03)?;
self.set_lut()
}
fn sleep(&mut self) -> Result<(), E> {
self.interface.send_command(Command::DEEP_SLEEP_MODE)?;
}
impl<SPI, CS, BUSY, DC, RST, Delay, ERR>
WaveshareInterface<SPI, CS, BUSY, DC, RST, Delay, ERR>
for EPD2in9<SPI, CS, BUSY, DC, RST, Delay>
where
SPI: Write<u8, Error = ERR>,
CS: OutputPin,
BUSY: InputPin,
DC: OutputPin,
RST: OutputPin,
Delay: DelayUs<u16> + DelayMs<u16>,
{
fn get_width(&self) -> u16 {
WIDTH
}
fn get_height(&self) -> u16 {
HEIGHT
}
fn new(
spi: SPI, cs: CS, busy: BUSY, dc: DC, rst: RST, delay: Delay,
) -> Result<Self, ERR> {
let interface = ConnectionInterface::new(spi, cs, busy, dc, rst, delay);
let mut epd = EPD2in9 {
interface,
background_color: DEFAULT_BACKGROUND_COLOR,
};
epd.init()?;
Ok(epd)
}
fn sleep(&mut self) -> Result<(), ERR> {
// 0x00 for Normal mode (Power on Reset), 0x01 for Deep Sleep Mode
//TODO: is 0x00 needed here?
self.interface.send_data(0x00)?;
//TODO: is 0x00 needed here? (see also epd1in54)
self.interface.command_with_data(Command::DEEP_SLEEP_MODE, &[0x00])?;
self.wait_until_idle();
Ok(())
}
fn reset(&mut self) {
self.interface.reset()
fn wake_up(&mut self) -> Result<(), ERR> {
self.init()
}
fn delay_ms(&mut self, delay: u16) {
self.interface.delay_ms(delay)
}
fn update_frame(&mut self, buffer: &[u8]) -> Result<(), E>{
fn update_frame(&mut self, buffer: &[u8]) -> Result<(), ERR> {
self.use_full_frame()?;
self.interface.send_command(Command::WRITE_RAM)?;
self.interface.send_multiple_data(buffer)
self.interface.command_with_data(Command::WRITE_RAM, buffer)
}
//TODO: update description: last 3 bits will be ignored for width and x_pos
fn update_partial_frame(&mut self, buffer: &[u8], x: u16, y: u16, width: u16, height: u16) -> Result<(), E>{
fn update_partial_frame(
&mut self,
buffer: &[u8],
x: u16,
y: u16,
width: u16,
height: u16,
) -> Result<(), ERR> {
self.set_ram_area(x, y, x + width, y + height)?;
self.set_ram_counter(x, y)?;
self.interface.send_command(Command::WRITE_RAM)?;
self.interface.send_multiple_data(buffer)
self.interface.command_with_data(Command::WRITE_RAM, buffer)
}
fn display_frame(&mut self) -> Result<(), E>{
fn display_frame(&mut self) -> Result<(), ERR> {
// enable clock signal, enable cp, display pattern -> 0xC4 (tested with the arduino version)
//TODO: test control_1 or control_2 with default value 0xFF (from the datasheet)
self.interface.send_command(Command::DISPLAY_UPDATE_CONTROL_2)?;
self.interface.send_data(0xC4)?;
self.interface.command_with_data(Command::DISPLAY_UPDATE_CONTROL_2, &[0xC4])?;
self.interface.send_command(Command::MASTER_ACTIVATION)?;
self.interface.command(Command::MASTER_ACTIVATION)?;
// MASTER Activation should not be interupted to avoid currption of panel images
// therefore a terminate command is send
self.interface.send_command(Command::TERMINATE_COMMANDS_AND_FRAME_WRITE)
self.interface.command(Command::NOP)
}
fn update_and_display_frame(&mut self, buffer: &[u8]) -> Result<(), E>{
fn update_and_display_frame(&mut self, buffer: &[u8]) -> Result<(), ERR> {
self.update_frame(buffer)?;
self.display_frame()
}
fn clear_frame(&mut self) -> Result<(), E>{
fn update_and_display_partial_frame(
&mut self,
buffer: &[u8],
x: u16,
y: u16,
width: u16,
height: u16,
) -> Result<(), ERR> {
self.update_partial_frame(buffer, x, y, width, height)?;
self.display_frame()
}
fn clear_frame(&mut self) -> Result<(), ERR> {
self.use_full_frame()?;
// clear the ram with the background color
let color = self.background_color.get_byte_value();
self.interface.send_command(Command::WRITE_RAM)?;
self.interface.send_data_x_times(color, WIDTH / 8 * HEIGHT)
self.interface.command(Command::WRITE_RAM)?;
self.interface.data_x_times(color, WIDTH / 8 * HEIGHT)
}
/// Sets the backgroundcolor for various commands like [WaveshareInterface::clear_frame()](clear_frame())
fn set_background_color(&mut self, background_color: Color){
fn set_background_color(&mut self, background_color: Color) {
self.background_color = background_color;
}
fn background_color(&self) -> &Color {
&self.background_color
}
}
impl<SPI, CS, BUSY, DC, RST, D, E> EPD2in9<SPI, CS, BUSY, DC, RST, D>
where
where
SPI: Write<u8, Error = E>,
CS: OutputPin,
BUSY: InputPin,
@ -242,54 +236,59 @@ where
fn wait_until_idle(&mut self) {
self.interface.wait_until_idle(false);
}
pub(crate) fn use_full_frame(&mut self) -> Result<(), E> {
// choose full frame/ram
self.set_ram_area(0, 0, WIDTH - 1, HEIGHT - 1)?;
// start from the beginning
self.set_ram_counter(0,0)
self.set_ram_counter(0, 0)
}
pub(crate) fn set_ram_area(&mut self, start_x: u16, start_y: u16, end_x: u16, end_y: u16) -> Result<(), E> {
pub(crate) fn set_ram_area(
&mut self,
start_x: u16,
start_y: u16,
end_x: u16,
end_y: u16,
) -> Result<(), E> {
assert!(start_x < end_x);
assert!(start_y < end_y);
// x is positioned in bytes, so the last 3 bits which show the position inside a byte in the ram
// aren't relevant
self.interface.send_command(Command::SET_RAM_X_ADDRESS_START_END_POSITION)?;
self.interface.send_data((start_x >> 3) as u8)?;
self.interface.send_data((end_x >> 3) as u8)?;
// aren't relevant
self.interface.command(Command::SET_RAM_X_ADDRESS_START_END_POSITION)?;
self.interface.data((start_x >> 3) as u8)?;
self.interface.data((end_x >> 3) as u8)?;
// 2 Databytes: A[7:0] & 0..A[8] for each - start and end
self.interface.send_command(Command::SET_RAM_Y_ADDRESS_START_END_POSITION)?;
self.interface.send_data(start_y as u8)?;
self.interface.send_data((start_y >> 8) as u8)?;
self.interface.send_data(end_y as u8)?;
self.interface.send_data((end_y >> 8) as u8)
self.interface.command(Command::SET_RAM_Y_ADDRESS_START_END_POSITION)?;
self.interface.data(start_y as u8)?;
self.interface.data((start_y >> 8) as u8)?;
self.interface.data(end_y as u8)?;
self.interface.data((end_y >> 8) as u8)
}
pub(crate) fn set_ram_counter(&mut self, x: u16, y: u16) -> Result<(), E> {
// x is positioned in bytes, so the last 3 bits which show the position inside a byte in the ram
// aren't relevant
self.interface.send_command(Command::SET_RAM_X_ADDRESS_COUNTER)?;
self.interface.send_data((x >> 3) as u8)?;
self.interface.command_with_data(Command::SET_RAM_X_ADDRESS_COUNTER, &[(x >> 3) as u8])?;
// 2 Databytes: A[7:0] & 0..A[8]
self.interface.send_command(Command::SET_RAM_Y_ADDRESS_COUNTER)?;
self.interface.send_data(y as u8)?;
self.interface.send_data((y >> 8) as u8)?;
self.interface.command(Command::SET_RAM_Y_ADDRESS_COUNTER)?;
self.interface.data(y as u8)?;
self.interface.data((y >> 8) as u8)?;
self.wait_until_idle();
Ok(())
}
/// Uses the slower full update
/// Uses the slower full update
pub fn set_lut(&mut self) -> Result<(), E> {
self.set_lut_helper(&LUT_FULL_UPDATE)
}
/// Uses the quick partial refresh
/// Uses the quick partial refresh
pub fn set_lut_quick(&mut self) -> Result<(), E> {
self.set_lut_helper(&LUT_PARTIAL_UPDATE)
}
@ -299,11 +298,8 @@ where
// self.set_lut_helper(buffer)
//}
fn set_lut_helper(&mut self, buffer: &[u8]) -> Result<(), E> {
assert!(buffer.len() == 30);
self.interface.send_command(Command::WRITE_LUT_REGISTER)?;
self.interface.send_multiple_data(buffer)
self.interface.command_with_data(Command::WRITE_LUT_REGISTER, buffer)
}
}
}

287
src/epd4in2/command.rs

@ -1,170 +1,167 @@
//! SPI Commands for the Waveshare 4.2" E-Ink Display
use interface;
/// EPD4IN2 commands
///
///
/// Should rarely (never?) be needed directly.
///
/// For more infos about the addresses and what they are doing look into the pdfs
///
///
/// For more infos about the addresses and what they are doing look into the pdfs
///
/// The description of the single commands is mostly taken from IL0398.pdf
#[allow(dead_code)]
#[allow(non_camel_case_types)]
#[derive(Copy, Clone)]
pub(crate) enum Command {
/// Set Resolution, LUT selection, BWR pixels, gate scan direction, source shift direction, booster switch, soft reset
PANEL_SETTING = 0x00,
/// selecting internal and external power
POWER_SETTING = 0x01,
/// After the Power Off command, the driver will power off following the Power Off Sequence. This command will turn off charge
/// pump, T-con, source driver, gate driver, VCOM, and temperature sensor, but register data will be kept until VDD becomes OFF.
/// Source Driver output and Vcom will remain as previous condition, which may have 2 conditions: floating.
POWER_OFF = 0x02,
/// Setting Power OFF sequence
POWER_OFF_SEQUENCE_SETTING = 0x03,
/// Turning On the Power
POWER_ON = 0x04,
/// This command enables the internal bandgap, which will be cleared by the next POF.
POWER_ON_MEASURE = 0x05,
/// Starting data transmission
BOOSTER_SOFT_START = 0x06,
/// After this command is transmitted, the chip would enter the deep-sleep mode to save power.
///
/// The deep sleep mode would return to standby by hardware reset.
///
/// The only one parameter is a check code, the command would be excuted if check code = 0xA5.
DEEP_SLEEP = 0x07,
/// This command starts transmitting data and write them into SRAM. To complete data transmission, command DSP (Data
/// transmission Stop) must be issued. Then the chip will start to send data/VCOM for panel.
///
/// - In B/W mode, this command writes “OLD” data to SRAM.
/// - In B/W/Red mode, this command writes “B/W” data to SRAM.
/// - In Program mode, this command writes “OTP” data to SRAM for programming.
DATA_START_TRANSMISSION_1 = 0x10,
/// Stopping data transmission
DATA_STOP = 0x11,
/// While user sent this command, driver will refresh display (data/VCOM) according to SRAM data and LUT.
///
/// After Display Refresh command, BUSY_N signal will become “0” and the refreshing of panel starts.
DISPLAY_REFRESH = 0x12,
/// This command starts transmitting data and write them into SRAM. To complete data transmission, command DSP (Data
/// transmission Stop) must be issued. Then the chip will start to send data/VCOM for panel.
/// - In B/W mode, this command writes “NEW” data to SRAM.
/// - In B/W/Red mode, this command writes “RED” data to SRAM.
DATA_START_TRANSMISSION_2 = 0x13,
PANEL_SETTING = 0x00,
/// selecting internal and external power
POWER_SETTING = 0x01,
/// After the Power Off command, the driver will power off following the Power Off Sequence. This command will turn off charge
/// pump, T-con, source driver, gate driver, VCOM, and temperature sensor, but register data will be kept until VDD becomes OFF.
/// Source Driver output and Vcom will remain as previous condition, which may have 2 conditions: floating.
POWER_OFF = 0x02,
/// Setting Power OFF sequence
POWER_OFF_SEQUENCE_SETTING = 0x03,
/// Turning On the Power
POWER_ON = 0x04,
/// This command enables the internal bandgap, which will be cleared by the next POF.
POWER_ON_MEASURE = 0x05,
/// Starting data transmission
BOOSTER_SOFT_START = 0x06,
/// After this command is transmitted, the chip would enter the deep-sleep mode to save power.
///
/// The deep sleep mode would return to standby by hardware reset.
///
/// The only one parameter is a check code, the command would be excuted if check code = 0xA5.
DEEP_SLEEP = 0x07,
/// This command starts transmitting data and write them into SRAM. To complete data transmission, command DSP (Data
/// transmission Stop) must be issued. Then the chip will start to send data/VCOM for panel.
///
/// - In B/W mode, this command writes “OLD” data to SRAM.
/// - In B/W/Red mode, this command writes “B/W” data to SRAM.
/// - In Program mode, this command writes “OTP” data to SRAM for programming.
DATA_START_TRANSMISSION_1 = 0x10,
/// Stopping data transmission
DATA_STOP = 0x11,
/// While user sent this command, driver will refresh display (data/VCOM) according to SRAM data and LUT.
///
/// After Display Refresh command, BUSY_N signal will become “0” and the refreshing of panel starts.
DISPLAY_REFRESH = 0x12,
/// This command starts transmitting data and write them into SRAM. To complete data transmission, command DSP (Data
/// transmission Stop) must be issued. Then the chip will start to send data/VCOM for panel.
/// - In B/W mode, this command writes “NEW” data to SRAM.
/// - In B/W/Red mode, this command writes “RED” data to SRAM.
DATA_START_TRANSMISSION_2 = 0x13,
/// This command stores VCOM Look-Up Table with 7 groups of data. Each group contains information for one state and is stored
/// with 6 bytes, while the sixth byte indicates how many times that phase will repeat.
///
/// from IL0373
LUT_FOR_VCOM = 0x20,
/// This command stores White-to-White Look-Up Table with 7 groups of data. Each group contains information for one state and is
/// stored with 6 bytes, while the sixth byte indicates how many times that phase will repeat.
///
/// from IL0373
LUT_WHITE_TO_WHITE = 0x21,
/// This command stores Black-to-White Look-Up Table with 7 groups of data. Each group contains information for one state and is
/// stored with 6 bytes, while the sixth byte indicates how many times that phase will repeat.
///
/// from IL0373
LUT_BLACK_TO_WHITE = 0x22,
/// This command stores White-to-Black Look-Up Table with 7 groups of data. Each group contains information for one state and is
/// stored with 6 bytes, while the sixth byte indicates how many times that phase will repeat.
///
/// from IL0373
LUT_WHITE_TO_BLACK = 0x23,
/// This command stores Black-to-Black Look-Up Table with 7 groups of data. Each group contains information for one state and is
/// stored with 6 bytes, while the sixth byte indicates how many times that phase will repeat.
///
/// from IL0373
LUT_BLACK_TO_BLACK = 0x24,
/// The command controls the PLL clock frequency.
PLL_CONTROL = 0x30,
/// This command reads the temperature sensed by the temperature sensor.
///
/// Doesn't work! Waveshare doesn't connect the read pin
TEMPERATURE_SENSOR_COMMAND = 0x40,
/// Selects the Internal or External temperature sensor and offset
TEMPERATURE_SENSOR_SELECTION = 0x41,
/// Write External Temperature Sensor
TEMPERATURE_SENSOR_WRITE = 0x42,
/// Read External Temperature Sensor
///
/// Doesn't work! Waveshare doesn't connect the read pin
TEMPERATURE_SENSOR_READ = 0x43,
/// This command indicates the interval of Vcom and data output. When setting the vertical back porch, the total blanking will be kept (20 Hsync)
VCOM_AND_DATA_INTERVAL_SETTING = 0x50,
/// This command indicates the input power condition. Host can read this flag to learn the battery condition.
LOW_POWER_DETECTION = 0x51,
/// This command defines non-overlap period of Gate and Source.
TCON_SETTING = 0x60,
/// This command defines alternative resolution and this setting is of higher priority than the RES\[1:0\] in R00H (PSR).
RESOLUTION_SETTING = 0x61,
/// This command defines the Fist Active Gate and First Active Source of active channels.
GSST_SETTING = 0x65,
/// The LUT_REV / Chip Revision is read from OTP address = 0x001.
///
/// Doesn't work! Waveshare doesn't connect the read pin
REVISION = 0x70,
/// Read Flags. This command reads the IC status
/// PTL, I2C_ERR, I2C_BUSY, DATA, PON, POF, BUSY
///
/// Doesn't work! Waveshare doesn't connect the read pin
GET_STATUS = 0x71,
/// Automatically measure VCOM. This command reads the IC status
AUTO_MEASUREMENT_VCOM = 0x80,
/// This command gets the VCOM value
///
/// Doesn't work! Waveshare doesn't connect the read pin
READ_VCOM_VALUE = 0x81,
/// Set VCM_DC
VCM_DC_SETTING = 0x82,
/// This command sets partial window
PARTIAL_WINDOW = 0x90,
/// This command makes the display enter partial mode
PARTIAL_IN = 0x91,
/// This command makes the display exit partial mode and enter normal mode
PARTIAL_OUT = 0x92,
/// After this command is issued, the chip would enter the program mode.
///
/// After the programming procedure completed, a hardware reset is necessary for leaving program mode.
///
/// The only one parameter is a check code, the command would be excuted if check code = 0xA5.
PROGRAM_MODE = 0xA0,
/// After this command is transmitted, the programming state machine would be activated.
///
/// The BUSY flag would fall to 0 until the programming is completed.
ACTIVE_PROGRAMMING = 0xA1,
/// The command is used for reading the content of OTP for checking the data of programming.
///
/// The value of (n) is depending on the amount of programmed data, tha max address = 0xFFF.
READ_OTP = 0xA2,
/// This command is set for saving power during fresh period. If the output voltage of VCOM / Source is from negative to positive or
/// from positive to negative, the power saving mechanism will be activated. The active period width is defined by the following two
/// parameters.
POWER_SAVING = 0xE3,
/// This command stores VCOM Look-Up Table with 7 groups of data. Each group contains information for one state and is stored
/// with 6 bytes, while the sixth byte indicates how many times that phase will repeat.
///
/// from IL0373
LUT_FOR_VCOM = 0x20,
/// This command stores White-to-White Look-Up Table with 7 groups of data. Each group contains information for one state and is
/// stored with 6 bytes, while the sixth byte indicates how many times that phase will repeat.
///
/// from IL0373
LUT_WHITE_TO_WHITE = 0x21,
/// This command stores Black-to-White Look-Up Table with 7 groups of data. Each group contains information for one state and is
/// stored with 6 bytes, while the sixth byte indicates how many times that phase will repeat.
///
/// from IL0373
LUT_BLACK_TO_WHITE = 0x22,
/// This command stores White-to-Black Look-Up Table with 7 groups of data. Each group contains information for one state and is
/// stored with 6 bytes, while the sixth byte indicates how many times that phase will repeat.
///
/// from IL0373
LUT_WHITE_TO_BLACK = 0x23,
/// This command stores Black-to-Black Look-Up Table with 7 groups of data. Each group contains information for one state and is
/// stored with 6 bytes, while the sixth byte indicates how many times that phase will repeat.
///
/// from IL0373
LUT_BLACK_TO_BLACK = 0x24,
/// The command controls the PLL clock frequency.
PLL_CONTROL = 0x30,
/// This command reads the temperature sensed by the temperature sensor.
///
/// Doesn't work! Waveshare doesn't connect the read pin
TEMPERATURE_SENSOR_COMMAND = 0x40,
/// Selects the Internal or External temperature sensor and offset
TEMPERATURE_SENSOR_SELECTION = 0x41,
/// Write External Temperature Sensor
TEMPERATURE_SENSOR_WRITE = 0x42,
/// Read External Temperature Sensor
///
/// Doesn't work! Waveshare doesn't connect the read pin
TEMPERATURE_SENSOR_READ = 0x43,
/// This command indicates the interval of Vcom and data output. When setting the vertical back porch, the total blanking will be kept (20 Hsync)
VCOM_AND_DATA_INTERVAL_SETTING = 0x50,
/// This command indicates the input power condition. Host can read this flag to learn the battery condition.
LOW_POWER_DETECTION = 0x51,
/// This command defines non-overlap period of Gate and Source.
TCON_SETTING = 0x60,
/// This command defines alternative resolution and this setting is of higher priority than the RES\[1:0\] in R00H (PSR).
RESOLUTION_SETTING = 0x61,
/// This command defines the Fist Active Gate and First Active Source of active channels.
GSST_SETTING = 0x65,
/// The LUT_REV / Chip Revision is read from OTP address = 0x001.
///
/// Doesn't work! Waveshare doesn't connect the read pin
REVISION = 0x70,
/// Read Flags. This command reads the IC status
/// PTL, I2C_ERR, I2C_BUSY, DATA, PON, POF, BUSY
///
/// Doesn't work! Waveshare doesn't connect the read pin
GET_STATUS = 0x71,
/// Automatically measure VCOM. This command reads the IC status
AUTO_MEASUREMENT_VCOM = 0x80,
/// This command gets the VCOM value
///
/// Doesn't work! Waveshare doesn't connect the read pin
READ_VCOM_VALUE = 0x81,
/// Set VCM_DC
VCM_DC_SETTING = 0x82,
/// This command sets partial window
PARTIAL_WINDOW = 0x90,
/// This command makes the display enter partial mode
PARTIAL_IN = 0x91,
/// This command makes the display exit partial mode and enter normal mode
PARTIAL_OUT = 0x92,
/// After this command is issued, the chip would enter the program mode.
///
/// After the programming procedure completed, a hardware reset is necessary for leaving program mode.
///
/// The only one parameter is a check code, the command would be excuted if check code = 0xA5.
PROGRAM_MODE = 0xA0,
/// After this command is transmitted, the programming state machine would be activated.
///
/// The BUSY flag would fall to 0 until the programming is completed.
ACTIVE_PROGRAMMING = 0xA1,
/// The command is used for reading the content of OTP for checking the data of programming.
///
/// The value of (n) is depending on the amount of programmed data, tha max address = 0xFFF.
READ_OTP = 0xA2,
/// This command is set for saving power during fresh period. If the output voltage of VCOM / Source is from negative to positive or
/// from positive to negative, the power saving mechanism will be activated. The active period width is defined by the following two
/// parameters.
POWER_SAVING = 0xE3,
}
impl interface::Command for Command {
/// Returns the address of the command
fn address(self) -> u8 {
self as u8
}
/// Returns the address of the command
fn address(self) -> u8 {
self as u8
}
}
#[cfg(test)]
mod tests {
use super::*;
use interface::Command as CommandTrait;
use interface::Command as CommandTrait;
#[test]
fn command_addr() {
assert_eq!(Command::POWER_SAVING.address(), 0xE3);
assert_eq!(Command::POWER_SAVING.address(), 0xE3);
assert_eq!(Command::PANEL_SETTING.address(), 0x00);
assert_eq!(Command::PANEL_SETTING.address(), 0x00);
assert_eq!(Command::DISPLAY_REFRESH.address(), 0x12);
assert_eq!(Command::DISPLAY_REFRESH.address(), 0x12);
}
}
}

2
src/epd4in2/constants.rs

@ -108,4 +108,4 @@ pub(crate) const LUT_WB_QUICK: [u8; 42] =[
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
];
];

274
src/epd4in2/mod.rs

@ -51,7 +51,7 @@ use hal::{
digital::*,
};
use interface::{connection_interface::ConnectionInterface, WaveshareInterface};
use interface::{connection_interface::ConnectionInterface, WaveshareInterface, InternalWiAdditions};
//The Lookup Tables for the Display
mod constants;
@ -62,80 +62,35 @@ use drawing::color::Color;
pub mod command;
use self::command::Command;
/// EPD4in2 driver
///
pub struct EPD4in2<SPI, CS, BUSY, DC, RST, D>
{
pub struct EPD4in2<SPI, CS, BUSY, DC, RST, D> {
/// Connection Interface
interface: ConnectionInterface<SPI, CS, BUSY, DC, RST, D>,
/// Width
width: u16,
/// Height
height: u16,
/// Background Color
color: Color,
}
impl<SPI, CS, BUSY, DataCommand, RST, Delay, SpiError> WaveshareInterface<SPI, CS, BUSY, DataCommand, RST, Delay, SpiError>
for EPD4in2<SPI, CS, BUSY, DataCommand, RST, Delay>
where
SPI: Write<u8, Error = SpiError>,
impl<SPI, CS, BUSY, DC, RST, Delay, ERR>
InternalWiAdditions<SPI, CS, BUSY, DC, RST, Delay, ERR>
for EPD4in2<SPI, CS, BUSY, DC, RST, Delay>
where
SPI: Write<u8, Error = ERR>,
CS: OutputPin,
BUSY: InputPin,
DataCommand: OutputPin,
DC: OutputPin,
RST: OutputPin,
Delay: DelayUs<u16> + DelayMs<u16>,
{
fn get_width(&self) -> u16 {
self.width
}
fn get_height(&self) -> u16 {
self.height
}
/// Creates a new driver from a SPI peripheral, CS Pin, Busy InputPin, DC
///
/// This already initialises the device. That means [init()](init()) isn't needed directly afterwards
///
/// # Example
///
/// ```ignore
/// //buffer = some image data;
///
/// let mut epd4in2 = EPD4in2::new(spi, cs, busy, dc, rst, delay);
///
/// epd4in2.display_and_transfer_frame(buffer, None);
///
/// epd4in2.sleep();
/// ```
fn new(interface: ConnectionInterface<SPI, CS, BUSY, DataCommand, RST, Delay>) -> Result<Self, SpiError> {
let width = WIDTH as u16;
let height = HEIGHT as u16;
let color = Color::White;
let mut epd = EPD4in2 {
interface,
width,
height,
color,
};
epd.init()?;
Ok(epd)
}
fn init(&mut self) -> Result<(), SpiError> {
fn init(&mut self) -> Result<(), ERR> {
// reset the device
self.reset();
self.interface.reset();
// set the power settings
self.send_command(Command::POWER_SETTING)?;
self.command(Command::POWER_SETTING)?;
self.send_data(0x03)?; //VDS_EN, VDG_EN
self.send_data(0x00)?; //VCOM_HV, VGHL_LV[1], VGHL_LV[0]
self.send_data(0x2b)?; //VDH
@ -143,17 +98,17 @@ where
self.send_data(0xff)?; //VDHR
// start the booster
self.send_command(Command::BOOSTER_SOFT_START)?;
self.command(Command::BOOSTER_SOFT_START)?;
for _ in 0..3 {
self.send_data(0x17)?; //07 0f 17 1f 27 2F 37 2f
}
// power on
self.send_command(Command::POWER_ON)?;
self.command(Command::POWER_ON)?;
self.wait_until_idle();
// set the panel settings
self.send_command(Command::PANEL_SETTING)?;
self.command(Command::PANEL_SETTING)?;
// 0x0F Red Mode, LUT from OTP
// 0x1F B/W Mode, LUT from OTP
// 0x2F Red Mode, LUT set by registers
@ -169,70 +124,95 @@ where
// 150Hz and 171Hz wasn't tested yet
// TODO: Test these other frequencies
// 3A 100HZ 29 150Hz 39 200HZ 31 171HZ DEFAULT: 3c 50Hz
self.send_command(Command::PLL_CONTROL)?;
self.command(Command::PLL_CONTROL)?;
self.send_data(0x3A)?;
self.set_lut()?;
Ok(())
}
}
impl<SPI, CS, BUSY, DC, RST, Delay, ERR>
WaveshareInterface<SPI, CS, BUSY, DC, RST, Delay, ERR>
for EPD4in2<SPI, CS, BUSY, DC, RST, Delay>
where
SPI: Write<u8, Error = ERR>,
CS: OutputPin,
BUSY: InputPin,
DC: OutputPin,
RST: OutputPin,
Delay: DelayUs<u16> + DelayMs<u16>,
{
/// Creates a new driver from a SPI peripheral, CS Pin, Busy InputPin, DC
///
/// This already initialises the device. That means [init()](init()) isn't needed directly afterwards
///
/// # Example
///
/// ```ignore
/// //buffer = some image data;
///
/// let mut epd4in2 = EPD4in2::new(spi, cs, busy, dc, rst, delay);
///
/// epd4in2.display_and_transfer_frame(buffer, None);
///
/// epd4in2.sleep();
/// ```
fn new(spi: SPI, cs: CS, busy: BUSY, dc: DC, rst: RST, delay: Delay) -> Result<Self, ERR> {
let interface = ConnectionInterface::new(spi, cs, busy, dc, rst, delay);
let color = Color::White;
let mut epd = EPD4in2 {
interface,
color,
};
epd.init()?;
Ok(epd)
}
fn sleep(&mut self) -> Result<(), SpiError> {
self.send_command(Command::VCOM_AND_DATA_INTERVAL_SETTING)?;
self.send_data(0x17)?; //border floating
self.send_command(Command::VCM_DC_SETTING)?; // VCOM to 0V
self.send_command(Command::PANEL_SETTING)?;
fn wake_up(&mut self) -> Result<(), ERR> {
self.init()
}
//TODO: is such a long delay really needed inbetween?
fn sleep(&mut self) -> Result<(), ERR> {
self.interface.command_with_data(Command::VCOM_AND_DATA_INTERVAL_SETTING, &[0x17])?; //border floating
self.command(Command::VCM_DC_SETTING)?; // VCOM to 0V
self.command(Command::PANEL_SETTING)?;
self.delay_ms(100);
self.send_command(Command::POWER_SETTING)?; //VG&VS to 0V fast
self.command(Command::POWER_SETTING)?; //VG&VS to 0V fast
for _ in 0..4 {
self.send_data(0x00)?;
}
self.delay_ms(100);
self.send_command(Command::POWER_OFF)?;
self.command(Command::POWER_OFF)?;
self.wait_until_idle();
self.send_command(Command::DEEP_SLEEP)?;
self.send_data(0xA5)?;
Ok(())
self.interface.command_with_data(Command::DEEP_SLEEP, &[0xA5])
}
fn reset(&mut self) {
self.interface.reset()
}
fn delay_ms(&mut self, delay: u16) {
self.interface.delay_ms(delay)
}
fn update_frame(&mut self, buffer: &[u8]) -> Result<(), SpiError> {
fn update_frame(&mut self, buffer: &[u8]) -> Result<(), ERR> {
let color_value = self.color.get_byte_value();
self.send_resolution()?;
self.send_command(Command::VCM_DC_SETTING)?;
self.send_data(0x12)?;
self.interface.command_with_data(Command::VCM_DC_SETTING, &[0x12])?;
self.send_command(Command::VCOM_AND_DATA_INTERVAL_SETTING)?;
//TODO: this was a send_command instead of a send_data. check if it's alright and doing what it should do (setting the default values)
//self.send_command_u8(0x97)?; //VBDF 17|D7 VBDW 97 VBDB 57 VBDF F7 VBDW 77 VBDB 37 VBDR B7
self.send_data(0x97)?;
self.interface.command_with_data(Command::VCOM_AND_DATA_INTERVAL_SETTING, &[0x97])?;
self.send_command(Command::DATA_START_TRANSMISSION_1)?;
for _ in 0..(buffer.len()) {
self.send_data(color_value)?;
}
self.delay_ms(2);
self.send_command(Command::DATA_START_TRANSMISSION_2)?;
//self.send_multiple_data(buffer)?;
for &elem in buffer.iter() {
self.send_data(elem)?;
}
self.command(Command::DATA_START_TRANSMISSION_1)?;
self.interface.data_x_times(color_value, buffer.len() as u16)?;
Ok(())
self.delay_ms(2);
self.interface.command_with_data(Command::DATA_START_TRANSMISSION_2, buffer)
}
fn update_partial_frame(
@ -242,15 +222,14 @@ where
y: u16,
width: u16,
height: u16,
) -> Result<(), SpiError> {
) -> Result<(), ERR> {
if buffer.len() as u16 != width / 8 * height {
//TODO: panic!! or sth like that
//return Err("Wrong buffersize");
}
self.send_command(Command::PARTIAL_IN)?;
self.send_command(Command::PARTIAL_WINDOW)?;
self.command(Command::PARTIAL_IN)?;
self.command(Command::PARTIAL_WINDOW)?;
self.send_data((x >> 8) as u8)?;
let tmp = x & 0xf8;
self.send_data(tmp as u8)?; // x should be the multiple of 8, the last 3 bit will always be ignored
@ -269,90 +248,93 @@ where
//TODO: handle dtm somehow
let is_dtm1 = false;
if is_dtm1 {
self.send_command(Command::DATA_START_TRANSMISSION_1)?
self.command(Command::DATA_START_TRANSMISSION_1)?
} else {
self.send_command(Command::DATA_START_TRANSMISSION_2)?
self.command(Command::DATA_START_TRANSMISSION_2)?
}
self.send_multiple_data(buffer)?;
self.send_command(Command::PARTIAL_OUT)
self.command(Command::PARTIAL_OUT)
}
fn update_and_display_frame(&mut self, buffer: &[u8]) -> Result<(), SpiError>{
self.update_frame(buffer)?;
self.display_frame()
}
fn display_frame(&mut self) -> Result<(), SpiError> {
self.send_command(Command::DISPLAY_REFRESH)?;
fn display_frame(&mut self) -> Result<(), ERR> {
self.command(Command::DISPLAY_REFRESH)?;
self.wait_until_idle();
Ok(())
}
// TODO: add this abstraction function
// fn update_and_display_frame(&mut self, buffer: &[u8]) -> Result<(), E>;
fn clear_frame(&mut self) -> Result<(), SpiError> {
fn clear_frame(&mut self) -> Result<(), ERR> {
self.send_resolution()?;
let size = self.width / 8 * self.height;
let size = WIDTH / 8 * HEIGHT;
let color_value = self.color.get_byte_value();
self.send_command(Command::DATA_START_TRANSMISSION_1)?;
self.delay_ms(2);
for _ in 0..size {
self.send_data(color_value)?;
}
self.command(Command::DATA_START_TRANSMISSION_1)?;
self.interface.data_x_times(color_value, size)?;
self.delay_ms(2);
self.send_command(Command::DATA_START_TRANSMISSION_2)?;
self.delay_ms(2);
for _ in 0..size {
self.send_data(color_value)?;
}
Ok(())
self.command(Command::DATA_START_TRANSMISSION_2)?;
self.interface.data_x_times(color_value, size)
}
/// Sets the backgroundcolor for various commands like [WaveshareInterface::clear_frame()](clear_frame())
fn set_background_color(&mut self, color: Color) {
self.color = color;
}
fn background_color(&self) -> &Color {
&self.color
}
fn get_width(&self) -> u16 {
WIDTH
}
fn get_height(&self) -> u16 {
HEIGHT
}
fn delay_ms(&mut self, delay: u16) {
self.interface.delay_ms(delay)
}
}
impl<SPI, CS, BUSY, DC, RST, D, SpiError> EPD4in2<SPI, CS, BUSY, DC, RST, D>
impl<SPI, CS, BUSY, DC, RST, D, ERR> EPD4in2<SPI, CS, BUSY, DC, RST, D>
where
SPI: Write<u8, Error = SpiError>,
SPI: Write<u8, Error = ERR>,
CS: OutputPin,
BUSY: InputPin,
DC: OutputPin,
RST: OutputPin,
D: DelayUs<u16> + DelayMs<u16>,
{
fn send_command(&mut self, command: Command) -> Result<(), SpiError> {
self.interface.send_command(command)
fn command(&mut self, command: Command) -> Result<(), ERR> {
self.interface.command(command)
}
fn send_data(&mut self, val: u8) -> Result<(), SpiError> {
self.interface.send_data(val)
fn send_data(&mut self, val: u8) -> Result<(), ERR> {
self.interface.data(val)
}
fn send_multiple_data(&mut self, data: &[u8]) -> Result<(), SpiError> {
self.interface.send_multiple_data(data)
fn send_multiple_data(&mut self, data: &[u8]) -> Result<(), ERR> {
self.interface.multiple_data(data)
}
fn wait_until_idle(&mut self) {
self.interface.wait_until_idle(true)
}
fn send_resolution(&mut self) -> Result<(), SpiError> {
fn send_resolution(&mut self) -> Result<(), ERR> {
let w = self.get_width();
let h = self.get_height();
self.send_command(Command::RESOLUTION_SETTING)?;
self.command(Command::RESOLUTION_SETTING)?;
self.send_data((w >> 8) as u8)?;
self.send_data(w as u8)?;
self.send_data((h >> 8) as u8)?;
@ -361,16 +343,16 @@ where
/// Fill the look-up table for the EPD
//TODO: make public?
fn set_lut(&mut self) -> Result<(), SpiError> {
fn set_lut(&mut self) -> Result<(), ERR> {
self.set_lut_helper(&LUT_VCOM0, &LUT_WW, &LUT_BW, &LUT_WB, &LUT_BB)
}
/// Fill the look-up table for a quick display (partial refresh)
///
/// Is automatically done by [EPD4in2::display_frame_quick()](EPD4in2::display_frame_quick())
///
/// Is automatically done by [EPD4in2::display_frame_quick()](EPD4in2::display_frame_quick())
/// //TODO: make public?
#[cfg(feature = "epd4in2_fast_update")]
fn set_lut_quick(&mut self) -> Result<(), SpiError> {
fn set_lut_quick(&mut self) -> Result<(), ERR> {
self.set_lut_helper(
&LUT_VCOM0_QUICK,
&LUT_WW_QUICK,
@ -387,25 +369,25 @@ where
lut_bw: &[u8],
lut_wb: &[u8],
lut_bb: &[u8],
) -> Result<(), SpiError> {
) -> Result<(), ERR> {
// LUT VCOM
self.send_command(Command::LUT_FOR_VCOM)?;
self.command(Command::LUT_FOR_VCOM)?;
self.send_multiple_data(lut_vcom)?;
// LUT WHITE to WHITE
self.send_command(Command::LUT_WHITE_TO_WHITE)?;
self.command(Command::LUT_WHITE_TO_WHITE)?;
self.send_multiple_data(lut_ww)?;
// LUT BLACK to WHITE
self.send_command(Command::LUT_BLACK_TO_WHITE)?;
self.command(Command::LUT_BLACK_TO_WHITE)?;
self.send_multiple_data(lut_bw)?;
// LUT WHITE to BLACK
self.send_command(Command::LUT_WHITE_TO_BLACK)?;
self.command(Command::LUT_WHITE_TO_BLACK)?;
self.send_multiple_data(lut_wb)?;
// LUT BLACK to BLACK
self.send_command(Command::LUT_BLACK_TO_BLACK)?;
self.command(Command::LUT_BLACK_TO_BLACK)?;
self.send_multiple_data(lut_bb)?;
Ok(())

125
src/interface/connection_interface.rs

@ -1,16 +1,13 @@
use hal::{
blocking::{
spi::Write,
delay::*
},
digital::*
blocking::{delay::*, spi::Write},
digital::*,
};
use interface::Command;
/// The Connection Interface of all (?) Waveshare EPD-Devices
///
pub struct ConnectionInterface<SPI, CS, BUSY, DC, RST, D> {
pub(crate) struct ConnectionInterface<SPI, CS, BUSY, DC, RST, D> {
/// SPI
spi: SPI,
/// CS for SPI
@ -25,58 +22,71 @@ pub struct ConnectionInterface<SPI, CS, BUSY, DC, RST, D> {
delay: D,
}
impl<SPI, CS, BUSY, DataCommand, RST, Delay, ErrorSpeziale> ConnectionInterface<SPI, CS, BUSY, DataCommand, RST, Delay>
where
SPI: Write<u8, Error = ErrorSpeziale>,
impl<SPI, CS, BUSY, DC, RST, Delay, ERR>
ConnectionInterface<SPI, CS, BUSY, DC, RST, Delay>
where
SPI: Write<u8, Error = ERR>,
CS: OutputPin,
BUSY: InputPin,
DataCommand: OutputPin,
DC: OutputPin,
RST: OutputPin,
Delay: DelayUs<u16> + DelayMs<u16>,
{
pub fn new(spi: SPI, cs: CS, busy: BUSY, dc: DataCommand, rst: RST, delay: Delay) -> Self {
ConnectionInterface {spi, cs, busy, dc, rst, delay }
pub fn new(spi: SPI, cs: CS, busy: BUSY, dc: DC, rst: RST, delay: Delay) -> Self {
ConnectionInterface {
spi,
cs,
busy,
dc,
rst,
delay,
}
}
/// Basic function for sending [Commands](Command).
/// Basic function for sending [Commands](Command).
///
/// Enables direct interaction with the device with the help of [data()](ConnectionInterface::data())
///
/// Enables direct interaction with the device with the help of [send_data()](ConnectionInterface::send_data())
/// Should rarely be needed!
/// //TODO: make public?
pub(crate) fn send_command<T: Command>(&mut self, command: T) -> Result<(), ErrorSpeziale> {
/// //TODO: make public?
pub(crate) fn command<T: Command>(&mut self, command: T) -> Result<(), ERR> {
// low for commands
self.dc.set_low();
self.dc.set_low();
// Transfer the command over spi
self.with_cs(|epd| {
epd.spi.write(&[command.address()])
})
self.with_cs(|epd| epd.spi.write(&[command.address()]))
}
/// Basic function for sending a single u8 of data over spi
///
/// Enables direct interaction with the device with the help of [Ecommand()](ConnectionInterface::command())
///
/// Enables direct interaction with the device with the help of [Esend_command()](ConnectionInterface::send_command())
///
/// Should rarely be needed!
/// //TODO: make public?
pub(crate) fn send_data(&mut self, val: u8) -> Result<(), ErrorSpeziale> {
/// //TODO: make public?
pub(crate) fn data(&mut self, val: u8) -> Result<(), ERR> {
// high for data
self.dc.set_high();
// Transfer data (u8) over spi
self.with_cs(|epd| {
epd.spi.write(&[val])
})
self.with_cs(|epd| epd.spi.write(&[val]))
}
/// Basic function for sending a single u8 of data over spi
/// Basic function for sending [Commands](Command) and the data belonging to it.
///
/// Enables direct interaction with the device with the help of [Esend_command()](ConnectionInterface::send_command())
/// //TODO: make public?
pub(crate) fn command_with_data<T: Command>(&mut self, command: T, data: &[u8]) -> Result<(), ERR> {
self.command(command)?;
self.multiple_data(data)
}
/// Basic function for sending the same byte of data (one u8) multiple times over spi
///
/// Enables direct interaction with the device with the help of [command()](ConnectionInterface::command())
///
/// Should rarely be needed!
/// //TODO: make public?
pub(crate) fn send_data_x_times(&mut self, val: u8, repetitions: u16) -> Result<(), ErrorSpeziale> {
/// //TODO: make public?
pub(crate) fn data_x_times(
&mut self,
val: u8,
repetitions: u16,
) -> Result<(), ERR> {
// high for data
self.dc.set_high();
@ -85,30 +95,27 @@ where
for _ in 0..repetitions {
epd.spi.write(&[val])?;
}
Ok(())
Ok(())
})
}
/// Basic function for sending an array of u8-values of data over spi
///
/// Enables direct interaction with the device with the help of [command()](EPD4in2::command())
///
/// Enables direct interaction with the device with the help of [send_command()](EPD4in2::send_command())
///
/// Should rarely be needed!
/// //TODO: make public?
pub(crate) fn send_multiple_data(&mut self, data: &[u8]) -> Result<(), ErrorSpeziale> {
/// //TODO: make public?
pub(crate) fn multiple_data(&mut self, data: &[u8]) -> Result<(), ERR> {
// high for data
self.dc.set_high();
// Transfer data (u8-array) over spi
self.with_cs(|epd| {
epd.spi.write(data)
})
self.with_cs(|epd| epd.spi.write(data))
}
// spi write helper/abstraction function
pub(crate) fn with_cs<F>(&mut self, f: F) -> Result<(), ErrorSpeziale>
where
F: FnOnce(&mut Self) -> Result<(), ErrorSpeziale>,
fn with_cs<F>(&mut self, f: F) -> Result<(), ERR>
where
F: FnOnce(&mut Self) -> Result<(), ERR>,
{
// activate spi with cs low
self.cs.set_low();
@ -120,19 +127,19 @@ where
result
}
/// Waits until device isn't busy anymore (busy == HIGH)
///
///
/// This is normally handled by the more complicated commands themselves,
/// but in the case you send data and commands directly you might need to check
/// if the device is still busy
///
///
/// is_busy_low
///
///
/// - TRUE for epd4in2, epd2in13, epd2in7, epd5in83, epd7in5
/// - FALSE for epd2in9, epd1in54 (for all Display Type A ones?)
///
///
/// Most likely there was a mistake with the 2in9 busy connection
/// //TODO: use the #cfg feature to make this compile the right way for the certain types
pub(crate) fn wait_until_idle(&mut self, is_busy_low: bool) {
self.delay_ms(1);
//low: busy, high: idle
@ -142,23 +149,22 @@ where
}
}
/// Abstraction of setting the delay for simpler calls
///
///
/// maximum delay ~65 seconds (u16:max in ms)
pub(crate) fn delay_ms(&mut self, delay: u16) {
self.delay.delay_ms(delay);
}
/// Resets the device.
///
///
/// Often used to awake the module from deep sleep. See [EPD4in2::sleep()](EPD4in2::sleep())
///
///
/// TODO: Takes at least 400ms of delay alone, can it be shortened?
pub(crate) fn reset(&mut self) {
self.rst.set_low();
//TODO: why 200ms? (besides being in the waveshare code)
//TODO: why 200ms? (besides being in the arduino version)
self.delay_ms(200);
self.rst.set_high();
@ -166,5 +172,4 @@ where
//TODO: same as 3 lines above
self.delay_ms(200);
}
}
}

179
src/interface/mod.rs

@ -1,18 +1,13 @@
use core::marker::Sized;
use hal::{
blocking::{
spi::Write,
delay::*
},
digital::*
blocking::{delay::*, spi::Write},
digital::*,
};
use core::marker::Sized;
use drawing::color::Color;
/// Interface for the physical connection between display and the controlling device
pub mod connection_interface;
use self::connection_interface::ConnectionInterface;
pub(crate) mod connection_interface;
/// All commands need to have this trait which gives the address of the command
/// which needs to be send via SPI with activated CommandsPin (Data/Command Pin in CommandMode)
@ -20,96 +15,128 @@ pub(crate) trait Command {
fn address(self) -> u8;
}
//TODO: add LUT trait with set_fast_lut and set_manual_lut and set_normal_lut or sth like that?
// for partial updates
trait LUTSupport<Error> {
fn set_lut(&mut self) -> Result<(), Error>;
fn set_lut_quick(&mut self) -> Result<(), Error>;
fn set_lut_manual(&mut self, data: &[u8]) -> Result<(), Error>;
trait LUTSupport<ERR> {
fn set_lut(&mut self) -> Result<(), ERR>;
fn set_lut_quick(&mut self) -> Result<(), ERR>;
fn set_lut_manual(&mut self, data: &[u8]) -> Result<(), ERR>;
}
pub trait WaveshareInterface<SPI, CS, BUSY, DataCommand, RST, Delay, Error>
where
SPI: Write<u8>,
CS: OutputPin,
BUSY: InputPin,
DataCommand: OutputPin,
RST: OutputPin,
Delay: DelayUs<u16> + DelayMs<u16>,
pub(crate) trait InternalWiAdditions<SPI, CS, BUSY, DC, RST, Delay, ERR>
where
SPI: Write<u8>,
CS: OutputPin,
BUSY: InputPin,
DC: OutputPin,
RST: OutputPin,
Delay: DelayUs<u16> + DelayMs<u16>,
{
/// Get the width of the display
fn get_width(&self) -> u16;
/// Get the height of the display
fn get_height(&self) -> u16;
/// Creates a new driver from a SPI peripheral, CS Pin, Busy InputPin, DC
///
/// This already initialises the device. That means [init()](WaveshareInterface::init()) isn't needed directly afterwards
fn new(
interface: ConnectionInterface<SPI, CS, BUSY, DataCommand, RST, Delay>
) -> Result<Self, Error>
where Self: Sized;
/// This initialises the EPD and powers it up
///
/// This function is already called from
/// - [new()](WaveshareInterface::new())
/// - [`wake_up`]
///
/// This function is already called from [new()](WaveshareInterface::new())
///
///
/// This function calls [reset()](WaveshareInterface::reset()),
/// so you don't need to call reset your self when trying to wake your device up
/// after setting it to sleep.
fn init(&mut self) -> Result<(), Error>;
fn init(&mut self) -> Result<(), ERR>;
}
// void DisplayFrame(const unsigned char* frame_buffer);
/// Transmit a full frame to the SRAM of the DPD
///
fn update_frame(&mut self, buffer: &[u8]) -> Result<(), Error>;
//TODO: is dtm always used?
/// Transmit partial data to the SRAM of the EPD,
/// the final parameter dtm chooses between the 2
/// internal buffers
///
/// Normally it should be dtm2, so use false
///
/// BUFFER needs to be of size: w / 8 * l !
fn update_partial_frame(&mut self, buffer: &[u8], x: u16, y: u16, width: u16, height: u16) -> Result<(), Error>;
pub trait WaveshareInterface<SPI, CS, BUSY, DC, RST, Delay, ERR>
where
SPI: Write<u8>,
CS: OutputPin,
BUSY: InputPin,
DC: OutputPin,
RST: OutputPin,
Delay: DelayUs<u16> + DelayMs<u16>,
{
/// Displays the frame data from SRAM
fn display_frame(&mut self) -> Result<(), Error>;
/// Creates a new driver from a SPI peripheral, CS Pin, Busy InputPin, DC
///
/// This already initialises the device. That means [init()](WaveshareInterface::init()) isn't needed directly afterwards
fn new(
spi: SPI, cs: CS, busy: BUSY, dc: DC, rst: RST, delay: Delay,
) -> Result<Self, ERR>
where
Self: Sized;
// TODO: add this abstraction function
fn update_and_display_frame(&mut self, buffer: &[u8]) -> Result<(), Error>;
/// Loads a full image on the EPD and displays it
fn update_and_display_frame(&mut self, buffer: &[u8]) -> Result<(), ERR> {
self.update_frame(buffer)?;
self.display_frame()
}
/// Loads a partial image on the EPD and displays it
fn update_and_display_partial_frame(
&mut self,
buffer: &[u8],
x: u16,
y: u16,
width: u16,
height: u16,
) -> Result<(), ERR> {
self.update_partial_frame(buffer, x, y, width, height)?;
self.display_frame()
}
/// Let the device enter deep-sleep mode to save power.
///
/// The deep sleep mode returns to standby with a hardware reset.
/// But you can also use [reset()](WaveshareInterface::reset()) to awaken.
/// But as you need to power it up once more anyway you can also just directly use [init()](WaveshareInterface::init()) for resetting
/// and initialising which already contains the reset
fn sleep(&mut self) -> Result<(), ERR>;
/// Clears the frame from the buffer
///
/// Uses the chosen background color
fn clear_frame(&mut self) -> Result<(), Error>;
fn wake_up(&mut self) -> Result<(), ERR>;
/// Sets the backgroundcolor for various commands like [clear_frame()](WaveshareInterface::clear_frame())
fn set_background_color(&mut self, color: Color);
/// Get current background color
fn background_color(&self) -> &Color;
/// Let the device enter deep-sleep mode to save power.
///
/// The deep sleep mode returns to standby with a hardware reset.
/// But you can also use [reset()](WaveshareInterface::reset()) to awaken.
/// But as you need to power it up once more anyway you can also just directly use [init()](WaveshareInterface::init()) for resetting
/// and initialising which already contains the reset
fn sleep(&mut self) -> Result<(), Error>;
/// Get the width of the display
fn get_width(&self) -> u16;
/// Resets the device.
///
/// Often used to awake the module from deep sleep. See [sleep()](WaveshareInterface::sleep())
fn reset(&mut self);
/// Get the height of the display
fn get_height(&self) -> u16;
/// Abstraction of setting the delay for simpler calls
///
///
/// maximum delay ~65 seconds (u16:max in ms)
fn delay_ms(&mut self, delay: u16);
}
// void DisplayFrame(const unsigned char* frame_buffer);
/// Transmit a full frame to the SRAM of the DPD
///
fn update_frame(&mut self, buffer: &[u8]) -> Result<(), ERR>;
/// Transmits partial data to the SRAM of the EPD
///
/// BUFFER needs to be of size: w / 8 * h !
fn update_partial_frame(
&mut self,
buffer: &[u8],
x: u16,
y: u16,
width: u16,
height: u16,
) -> Result<(), ERR>;
/// Displays the frame data from SRAM
fn display_frame(&mut self) -> Result<(), ERR>;
/// Clears the frame from the buffer with the declared background color
/// The background color can be changed with [`set_background_color`]
///
/// Uses the chosen background color
fn clear_frame(&mut self) -> Result<(), ERR>;
}

55
src/lib.rs

@ -3,86 +3,79 @@
//! This driver was built using [`embedded-hal`] traits.
//!
//! [`embedded-hal`]: https://docs.rs/embedded-hal/~0.1
//!
//!
//! # Requirements
//!
//!
//! ### SPI
//!
//!
//! - MISO is not connected/available
//! - SPI_MODE_0 is used (CPHL = 0, CPOL = 0)
//! - 8 bits per word, MSB first
//! - Max. Speed tested was 8Mhz but more should be possible
//!
//!
//! ### Other....
//!
//! - Buffersize: Wherever a buffer is used it always needs to be of the size: `width / 8 * length`,
//!
//! - Buffersize: Wherever a buffer is used it always needs to be of the size: `width / 8 * length`,
//! where width and length being either the full e-ink size or the partial update window size
//!
//! # Examples
//!
//! ```ignore
//! use eink-waveshare-rs::epd4in2::EPD4in2;
//!
//!
//! let mut epd4in2 = EPD4in2::new(spi, cs, busy, dc, rst, delay).unwrap();
//!
//! let mut buffer = [0u8, epd4in2.get_width() / 8 * epd4in2.get_height()];
//!
//!
//! // draw something into the buffer
//!
//!
//! epd4in2.display_and_transfer_buffer(buffer, None);
//!
//!
//! // wait and look at the image
//!
//!
//! epd4in2.clear_frame(None);
//!
//!
//! epd4in2.sleep();
//! ```
//!
//!
//!
#![no_std]
//TODO: Make more assertions about buffersizes?
extern crate embedded_hal as hal;
use hal::{
spi::{Mode, Phase, Polarity},
};
use hal::spi::{Mode, Phase, Polarity};
pub mod drawing;
mod interface;
pub use interface::{
WaveshareInterface,
connection_interface::ConnectionInterface};
pub use interface::{WaveshareInterface};
#[cfg(feature="epd4in2")]
#[cfg(feature = "epd4in2")]
mod epd4in2;
#[cfg(feature="epd4in2")]
#[cfg(feature = "epd4in2")]
pub use epd4in2::EPD4in2;
#[cfg(feature="epd1in54")]
#[cfg(feature = "epd1in54")]
mod epd1in54;
#[cfg(feature="epd1in54")]
#[cfg(feature = "epd1in54")]
pub use epd1in54::EPD1in54;
#[cfg(feature="epd2in9")]
#[cfg(feature = "epd2in9")]
mod epd2in9;
///2in9 eink
#[cfg(feature="epd2in9")]
#[cfg(feature = "epd2in9")]
///2in9 eink
pub use epd2in9::EPD2in9;
#[cfg(any(feature="epd1in54", feature="epd2in9"))]
#[cfg(any(feature = "epd1in54", feature = "epd2in9"))]
pub mod type_a;
//TODO: test spi mode
/// SPI mode -
/// SPI mode -
/// For more infos see [Requirements: SPI](index.html#spi)
pub const SPI_MODE: Mode = Mode {
phase: Phase::CaptureOnFirstTransition,
polarity: Polarity::IdleLow,
};
};

110
src/type_a/command.rs

@ -2,97 +2,93 @@
use interface;
/// EPD1in54 and EPD2IN9 commands
///
///
/// Should rarely (never?) be needed directly.
///
/// For more infos about the addresses and what they are doing look into the pdfs
///
/// For more infos about the addresses and what they are doing look into the pdfs
#[allow(dead_code)]
#[allow(non_camel_case_types)]
#[derive(Copy, Clone)]
pub(crate) enum Command {
/// Driver Output control
/// 3 Databytes:
/// A[7:0]
/// 0.. A[8]
/// 0.. B[2:0]
/// Default: Set A[8:0] = 0x127 and B[2:0] = 0x0
DRIVER_OUTPUT_CONTROL = 0x01,
/// Booster Soft start control
/// 3 Databytes:
/// 1.. A[6:0]
/// 1.. B[6:0]
/// 1.. C[6:0]
/// Default: A[7:0] = 0xCF, B[7:0] = 0xCE, C[7:0] = 0x8D
BOOSTER_SOFT_START_CONTROL = 0x0C,
/// Driver Output control
/// 3 Databytes:
/// A[7:0]
/// 0.. A[8]
/// 0.. B[2:0]
/// Default: Set A[8:0] = 0x127 and B[2:0] = 0x0
DRIVER_OUTPUT_CONTROL = 0x01,
/// Booster Soft start control
/// 3 Databytes:
/// 1.. A[6:0]
/// 1.. B[6:0]
/// 1.. C[6:0]
/// Default: A[7:0] = 0xCF, B[7:0] = 0xCE, C[7:0] = 0x8D
BOOSTER_SOFT_START_CONTROL = 0x0C,
GATE_SCAN_START_POSITION = 0x0F,
//TODO: useful?
// GATE_SCAN_START_POSITION = 0x0F,
/// Deep Sleep Mode Control
/// 1 Databyte:
/// 0.. A[0]
/// Values:
/// A[0] = 0: Normal Mode (POR)
/// A[0] = 1: Enter Deep Sleep Mode
DEEP_SLEEP_MODE = 0x10,
// /// Data Entry mode setting
DATA_ENTRY_MODE_SETTING = 0x11,
//TODO: useful?
// GATE_SCAN_START_POSITION = 0x0F,
/// Deep Sleep Mode Control
/// 1 Databyte:
/// 0.. A[0]
/// Values:
/// A[0] = 0: Normal Mode (POR)
/// A[0] = 1: Enter Deep Sleep Mode
DEEP_SLEEP_MODE = 0x10,
// /// Data Entry mode setting
DATA_ENTRY_MODE_SETTING = 0x11,
SW_RESET = 0x12,
SW_RESET = 0x12,
TEMPERATURE_SENSOR_CONTROL = 0x1A,
TEMPERATURE_SENSOR_CONTROL = 0x1A,
MASTER_ACTIVATION = 0x20,
MASTER_ACTIVATION = 0x20,
DISPLAY_UPDATE_CONTROL_1 = 0x21,
DISPLAY_UPDATE_CONTROL_1 = 0x21,
DISPLAY_UPDATE_CONTROL_2 = 0x22,
DISPLAY_UPDATE_CONTROL_2 = 0x22,
WRITE_RAM = 0x24,
WRITE_RAM = 0x24,
WRITE_VCOM_REGISTER = 0x2C,
WRITE_VCOM_REGISTER = 0x2C,
WRITE_LUT_REGISTER = 0x32,
WRITE_LUT_REGISTER = 0x32,
SET_DUMMY_LINE_PERIOD = 0x3A,
SET_DUMMY_LINE_PERIOD = 0x3A,
SET_GATE_LINE_WIDTH = 0x3B,
SET_GATE_LINE_WIDTH = 0x3B,
BORDER_WAVEFORM_CONTROL = 0x3C,
BORDER_WAVEFORM_CONTROL = 0x3C,
SET_RAM_X_ADDRESS_START_END_POSITION = 0x44,
SET_RAM_X_ADDRESS_START_END_POSITION = 0x44,
SET_RAM_Y_ADDRESS_START_END_POSITION = 0x45,
SET_RAM_Y_ADDRESS_START_END_POSITION = 0x45,
SET_RAM_X_ADDRESS_COUNTER = 0x4E,
SET_RAM_X_ADDRESS_COUNTER = 0x4E,
SET_RAM_Y_ADDRESS_COUNTER = 0x4F,
SET_RAM_Y_ADDRESS_COUNTER = 0x4F,
TERMINATE_COMMANDS_AND_FRAME_WRITE = 0xFF
NOP = 0xFF,
}
impl interface::Command for Command {
/// Returns the address of the command
fn address(self) -> u8 {
self as u8
}
/// Returns the address of the command
fn address(self) -> u8 {
self as u8
}
}
#[cfg(test)]
mod tests {
use super::Command;
use interface::Command as CommandTrait;
use interface::Command as CommandTrait;
#[test]
fn command_addr() {
assert_eq!(Command::DRIVER_OUTPUT_CONTROL.address(), 0x01);
assert_eq!(Command::DRIVER_OUTPUT_CONTROL.address(), 0x01);
assert_eq!(Command::SET_RAM_X_ADDRESS_COUNTER.address(), 0x4E);
assert_eq!(Command::SET_RAM_X_ADDRESS_COUNTER.address(), 0x4E);
assert_eq!(Command::TERMINATE_COMMANDS_AND_FRAME_WRITE.address(), 0xFF);
assert_eq!(Command::NOP.address(), 0xFF);
}
}
}

Loading…
Cancel
Save